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ABSTRACT We prove that any finite undirected graph
can be canonically embedded isometrically into a maximum
cartesian product of irreducible factors.

With each finite connected undirected graph' G = (V, E)
one can associate a metric dg: V X V— N (the set of nonneg-
ative integers) by defining dg(x, y) to be the number of edges
in a shortest path between x and y, for all x, y € V, the vertex
set of G. If (M, dy,) is an arbitrary metric space we say that
an embedding \: V — M is isometric if for all x, y € V,

du(Mx), M) = dg(x, y).

We denote this by \: G- M. Note that \ isometric implies
that \ is injective.

Isometric embeddings of graphs into various metric and
semi-metric spaces have been studied extensively in recent
years (e.g., see refs. 2-6). In particular, attention has been
focused on metric spaces which are formed as cartesian
products of other spaces with the induced /; metric—that is,
for a finite family of spaces (M;, dy), 1 < i < r, the product
space (IT}-, M;, d,,) is defined by setting

I_Il M;={F = (1, ..oy X,): X5 € My}
and
da(®, 7)1 = 2, day(xiy %)
=1

For a graph G = (V, E) with V = {vy, ..., v,}, define the
distance matrix D(G) = (d;;) of G by setting d;; = dg(vi, v;).
Since D(G) is real and symmetric, it has all real eigenvalues.
Let n.(G) and n_(G) denote the number of positive and neg-
ative eigenvalues, respectively, of D(G).

As an example, let (S, ds) be given by taking S = {0, 1, o}
and defining'!

lifx=0,x"=1lorx=1,x =0
ds(x, x') =

0 otherwise.

It is known (1) that in this case there always exists a least
integer N(G) so that

N(G)
G- [] §=sV9,
i=1
Furthermore,

() N(G) = max {n+(G), n_(G)} (6)
(i) NG) < [V| - 1()
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with equality holding in (i7) for trees, complete graphs, odd
cycles, and many other classes of graphs.

In this note we announce a number of basic results for
isometric embeddings of graphs into cartesian products of
graphs. In particular, we show how a natural concept of iso-
metric dimension of a graph G can be defined, and we con-
struct a canonical product graph G*, which enjoys an attrac-
tive universal property for isometric embeddings of G into
cartesian products. We also determine the isometric dimen-
sion of G in the important case that G embeds isometrically
into an n-cube (see ref. 5). Finally, we give a generalization
of the tree determinant formula (6, 8):

det (D(T,)) = (—1)*n-2""1

for any tree T, with n edges.
The details needed for proofs of our claims are somewhat
lengthy and will appear elsewhere.

The Main Results

For a connected graph G = (V, E) define a relation # on E as
follows:

Ife={x,y}€¢ Eande' = {x', y'} € E,
then e 6 e’ if

de(x, x') + dg(y, ') # delx, y') + de(x’, y).

#1is easily seen to be well-defined, reflexive, and symmetric;
let @ be its transitive closure and let E;, 1 < i < r, be the
equivalence classes of 6. Thus, E = U/_, E;. Forl <i=<r,let
G; denote the graph (V, E\E;) and let C;(1), Ci(2), ..., Ci(m;)
denote the connected components of G;. Finally, form the
graphs G¥ = (V¥, E¥), 1 < i<, by letting V¥ = {C;(D), ...,
Ci(m;)} and taking {(C;(j), C;(j')} to be an edge of G} iff
some edge in E; joins a vertex in C;(j) to a vertex in C;(j').
For v € C;(j), denote by «;: V— V¥ the natural contraction v
- Ci(j) € V.

We next define an embedding «: G — IT}-, G}, which we
will call the canornical embedding of G, by

a(v) = (1(v), V), ..., a{v)).

THEOREM 1. The canonical embedding o: G 1> T, G¥ is
isometric.

Let us call an embedding 8: G— II{_, H; irredundant if for
all i and all & € H;, h occurs as a coordinate value in B(g) for
some g € G (where we always assume |H;| > 1). We will say
that G is irreducible if G2 15—, H;implies G % H; for some
1.

$Deceased, May 13, 1984,

9In general, we follow the terminology of ref. 1.

HSince d, fails to satisfy the triangle inequality, (S, d,) is actually
only 4 semi-metric space.
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COROLLARY 1. G is irreducible if and only if E has one 6-
equivalence class.

COROLLARY 2. The fraction of graphs on n vertices which
are irreducible tends to 1 as n — o,

THEOREM 2. The canonical embedding is irredundant, has
irreducible factors, and has the largest possible number of
Sactors among all irredundant isometric embeddings of G.

We call this number of factors the isometric dimension of
G, denoted by dim/(G).

THEOREM 3. The only irredundant isometric embedding of
G into a cartesian product of dim(G) factors is the canoni-
cal one. Each factor H; of an irredundant isometric embed-
ding G EN IIf-y H; embeds Carzomcally into a product of Gfs.

THEOREM 4. Suppose GL K5 =112, K», where K, is the
graph with two vertices and one edge. Then dim(G) =
n_(G).

Let us say that a family of subsets S of {1, 2, ..., n} is full-
dimensional if the corresponding characteristic vectors § <>
(x1(8), ..., x(S)) C R” span a set of positive n-dimensional
volume (where x;(S) = 1if i € §, and 0 otherwise).

Suppose w is a discrete measure on the subsets of {1, 2, ...,
n}: = [n], i.e.,

wk)=0,1<k <n,

uX) = % ), X C [n].
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Our final result generalizes the tree determinant theorem
mentioned earlier (6, 8).

THEOREM 5. Suppose {Sqy, S, ..., Su} is a full-dimensional
family of subsets of [n] and p is a discrete measure on the
subsets of [n]. Then

det (4(SAS) = (127" 3 w [T o),

where XAY denotes the symmetric difference of X and Y.
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