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ABSTRACT 

An anti-Hadamard matrix may be loosely defined as a real (0,l) matrix which is 
invertible, but only just. Let A be an invertible (0,l) matrix with eigenvalues Xi, 
singular values a,, and inverse B = ( bi j). We are interested in the four closely related 

. . 
problems of findmg h(n) = mm,,, i [Ail, a(n) = min A,iui, X(‘J)=mmA,i,jIbijI~ ad 
p(n) = max,,CijbFj. Then A is an anti-Hadamard matrix if it attains a(n). We show 
that A(n), a(n) are between (Zn))‘(n/4) mn’z and cfi(2.274))“, where c is a 
constant, ~(2.274)” Q x(n) < 2(n/4)“/‘, and ~(5.172)” < a(n) < 4n2( n/4)“. We also 
consider these problems when A is restricted to be a Toeplitz, triangular, circulant, or 
(+ 1, - 1) matrix. Besides the obvious application-to finding the most ill-conditioned 
(0,l) matrices-there are connections with weighing designs, number theory, and 
geometry. 

I. INTRODUCTION 

If A is any real invertible matrix, with inverse B = (bi j), we let p(A) = 
Ci jbFj (this is the square of the Euclidean norm of A-’ [23]). A Hadamurd 
matrix H is an n x rz matrix with entries ( + 1, - 1) satisfying HH tr = nl,, 
where tr denotes transpose [ll, 15, 16, 17, 351. In 1944 Hotelling proved that 
ifAisa(+l, -l)matrix,then~(A)>l,and~(A)=lifandonlyifAisa 

Hadamard matrix ([18]; see also [l], [16]). A similar result appears to hold for 
(0,l) matrices. A binary Hadamard matrix, or S-matrix, is an n x rz (0,l) 
matrix formed by taking an (n + 1) X( n + 1) Hadamard matrix in which the 
entries in the first row and column are + 1, changing + l’s to O’s and - l’s to 
l’s, and deleting the first row and column [16]. An S-matrix satisfies SS’ 
= f( n + l)(Z, + J,,) and SJ, = J,S = k( n + l)./,,, where 1, is an all-ones matrix. 
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It is conjectured that if A is a (0,l) matrix, then 

p(A)> _-?!!f- 
(n+l)2’ 

(1) 

with equality if and only if A is an S-matrix [16, 27, 291. 
At the opposite extreme we call a (+ 1, - 1) or (0,l) matrix that muxi- 

mizes p,(A) an anti-Hadamard’ matrix. More precisely, if A = (aij) is an 
n x n invertible (0,l) matrix with eigenvalues hi, singular values a,, and 
inverse B = ( bi j), we define 

h(A) = min]XiJ, a(A) = minei, 
,. i i 

X(A) = malbijl, 
i.j 

p(A)= i b;, 
i,j=l 

and 

h(n) = mph(A), u(n) = mTo(A), 

x(n) = myx(A), d4 = yv(A). 

If A is restricted to be a symmetric, Toeplitz [26], triangular, or circulant [8] 
(0,l) matrix, this is indicated by a subscript s, T, t, or c respectively, or if A is 
a ( + 1, - 1) matrix we use a subscript k. 

Then the formal definition is that an anti-Hadamard matrix A is an n X n 
(0,l) matrix for which p(A) = p( n , or a ( + 1, - 1) matrix for which p(A) = ) 
pf (n). Some examples may be seen in Figure 1. However, the four problems 
of finding h(n), a(n), x(n), and p(n) are closely related. For a( A) < X(A) by 
Browne’s theorem [23, p. 1441, so 

u(n) G A(n). (2) 
Also the definitions imply 

d+i$ (3) 

‘Or, as C. L. Mallows has suggested, a Dramadah matrix. 
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[ll [: ;] [i y i] 

(4.1) (5.1) 

FIG. 1. Examples of (0,l) anti-Hadamard matrices [with the largest possible 
value of p(A)]. 

and, if A is symmetric, 

Therefore 

1 
J-q+)GL 

A(n)2 G c+)” o( rL)” ’ 

Finally 

x(A)~ <p(A) < n2x(N2, 

(4) 

(5) 

(6) 

implying 

x(fl)2~~(n)~n2X(n)2. (7) 

Therefore matrices for which h and u are small usually have large values of x 
and p, and conversely. We may say that whereas Hadamard matrices (since 
they are orthogonal) are a long way from being singular, anti-Hadamard 
matrices on the other hand are only just nonsingular. 
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Statement of Results 
We shall prove the following results. 

THEOREM 1 [The bounds for (0,l) matrices]. For all n, 

and there are infinitely many values of n fo7 which 

x(n) & ~(2.274)~, p(n) 2 c(5.172)“, 

(8) 

(9) 

(10) 

(11) 
where c is a constant (and diffferent occurrences of c in general represent 
dij&rent constants). 

THEOREM 2. For (+ 1, - 1) matrices we have 

while in the other direction (10) and (11) still hold (although with different 
values of c). 

THEOREM 3. For (0,l) symmetric and Toe&z matrices the bouruLs of 
Theorem 1 still hold, except that for Toeplitx matrices the constants 2.274 and 
5.172 in (lo), (11) should be replaced by 1.754 and 3.079 respectively. 

THEOREM 4. For triangular (0,l) matrices we have A,(n) = 1, 

xdn> = L2, (14) 

p*(n)=F~_l+n+~[(-l)“-l] 

+O(n)=$(2.618...)“+O(n), (15) 
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TABLE 1” 

Arbitrary Symmetric Toeplitz TliaIlgUlar (+l, -1) 
n An) k(n) h(n) r,(n) p+(n) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

(Fl) 
(&) 
(i.;, 
(z) 
(2;) 
146 + 

(6.2) 

624’ 

(7.2) 

2955 

(8.3) 

16,162 

(9.1) 

93,531 
(10.1) 

654,700 
(11.1) 

4,442,304 
(12.1) 

32,609,366 
(13.1) 

(& (& 
7* 7* 

(3.1) (3.1) 

16* 16* 

(4.1) (4.1) 

(Z) (Z) 

138* 138* 

(6.1) (6.1) 

624’ 601* 

(7.2) (7.1) 

2646’ 2619* 

(8.2) (8.1) 

16,162 16,162* 

(9.1) (9.1) 

93,531 93,531* 
(10.1) (10.1) 

654,700 654,700* 
(11.1) (11.1) 

4,442,304 4,442,304+ 
(12.1) (12.1) 

32,609,366 32,609,366 ’ 
(13.1) (13.1) 

(:;) 
(i.1) 
6* 

Eq. (35) 

13* 

Eq. (35) 

29* 

Eq. (35) 

70* 

Eq. (35) 

175* 

Eq. (35) 

449* 

Eq. (35) 

1164* 

Eq. (35) 

3035* 

Eq. (35) 

7931* 

Es. (35) 

20,748* 

Eq. (35) 

54,301* 

Es. (35) 

1* 

Wl) 

lf* ‘. 

9(2.1) 

2a* 

(P(3.1) 

5* 

+(4.1) 

12?j* 

(P(5.1) 

38 

@(6.2) 

158 

(~(7.2) 

775$ 

e(8.3) 

4291; 

q.J(9.1) 

23,773+ 

+(lO.l) 

169,250 

@(ll.l) 

1.252 x lo6 

$(12.1) 

“The first column refers to arbitrary invertible (0,l) matrices, and gives lower 
bounds on p(n), and the names of matrices attaining these bounds. Entries 
marked with * are exact, and the corresponding matrices are anti-Hadamard 
matrices. Entries marked with t are believed to be exact. The matrices them- 
selves can be found in Figures 1,2 and Table 2. The remaining columns give 
lower bounds for (0,l) symmetric, Toeplitz, and triangular matrices, and the last 
column refers to arbitrary (+ 1, - 1) matrices. The map $J is defined in Equation 

(18). 
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zuhere F, = FI = 1, F, = 2, I$ = 3,. . . are the Fibonucci numbers. Matrices 
attaining (15) are given in Equation (35) below. 

THEOREM 5. For circulant (0,l) matrices (8) and (9) still hold, but (10) 
and (11) must be replaced by 

x,(n) > s2”18, pc( n) > -52n/4. 
n2 

(16) 

(17) 

For small values of n we have made extensive computer calculations of 
many of these quantities, and the results are shown in Tables l-4. Table 1 
gives lower bounds (which in some cases are exact) for p(n), pS(n), etc., 

together with the names of matrices attaining the bounds. The names refer to 
the matrices given in Figures 1, 2 and Table 2. Our notation is that (8.1), 
(8.2),. . . , for example, are particular matrices of order 8, and 
T(a-C,-,,,...,a ,,...,a,_,) is a Toeplitz matrix of order n with (i, j)th entry 

a j_i. We usually write a,, the entry on the main diagonal, in boldface for 
emphasis. 

TABLE 2 
TOEPLITZ MATRICES WITH LARGEST VALUE OF p(A) a 

Order Name Matrix 

1 (1.1) T(1) 
2 (2.1) T(110) 
3 (3.1) T(lllO1) 
4 (4.1) T(1001101) 
5 (5.1) T(110011010) 
6 (6.1) T(01100110100) 
7 (7.1) T(1100011101100) 
8 (8.1) T(101111001101110) 
9 (9.1) T(10010011110001001) 

10 (10.1) T(0101110011110100010) 
11 (11.1) T(100110010111100110011) 
12 (12.1) T(11000100101111100010010) 
13 (13.1) T(1100011101001001110101001) 

‘See Table 1. The first five matrices are written in fhll in Figure 1. 
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TABLE 3 

V~UJJJG OF k(n)> h(n), X,(n) 
FOR n X n INVERTIBLE 

@,I) CIRCIJLANT MATRICESa 

119 

n h-(n) A,(n) x,(n) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

1* 

11 
2* 
Z, 

3* 

Z3 

4* 

Z‘l 

6.25* 
(5.2) 

6* 

Z, 

12.25* 
(7.3) 

15.111* 
(8.4) 

20.25* 
(9.2) 

21.111* 
(10.2) 

260.04* 
(11.2) 

35.04* 
(12.2) 

412.03* 
(13.2) 

173.04* 
(14.1) 

267.97* 
(15.1) 

302.15* 
(16.1) 

1* 

11 

1* 

12 

1* 

Z, 

1* 

Z, 

0.6180* 
(5.2) 

1* 

Ze 

0.4450* 
(7.3) 

0.4142* 
(8.4) 

0.3473* 
(9.2) 

0.3820* 
(10.2) 

0.08816* 
(11.2) 

0.2679* 
(12.2) 

0.07010* 
(13.2) 

0.1099* 
(14.1) 

0.08693* 
(15.1) 

0.08239* 
(16.1) 

1* 

11 
1* 

Z, 

1* 

Z, 

1* 

Z, 

1* 

15 

1* 
Z, 

1* 

17 

1* 
Z, 

1* 

19 

1* 
1 10 

,E, 

1* 
Z 12 

2.167’ 
(13.2) 

(kz) 

1.641* 
(15.1) 

1.867* 
(16.1) 
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TABLE 3 (Continued) 

n b+(n) A,(n) x,(n) 
17 4660.04* 0.02073* 5.6* 

(17.1) (17.1) (17.1) 

18 160.31* 0.1206* 
(18.2) (18.1) (K) 

19 7878.02* 0.01594* 6.583* 
(19.1) (19.1) (19.2) 

23 4.51 x 10” 0.002106* 41.125 

(23.1) (23.1) (23.1) 

29 5.77x10” 0.0005888* 1.17.309 
(29.1) (29.1) (29.1) 

“Conventions as in Table 1. The matrices themselves are 
given in Table 4. 

TABLE 4 
&VXJLANT MATRICES WITH LARGEST VALVES OF p(A), x(A) 

OR SMALLEST VALUE OF A( A) a 

Order Name Matrix ldetl 

5 (5.2) 
7 (7.3) 
8 (8.4) 
9 (9.2) 

10 (10.2) 
11 (11.2) 
12 (12.2) 
13 (13.2) 
14 (14.1) 
15 (15.1) 
16 (16.1) 
17 (17.1) 
18 (18.1) 
18 (18.2) 
19 (19.1) 
19 (19.2) 
23 (23.1) 
29 (29.1) 

C(11000) 2 
c(llOOooO) 2 

c(11lOoOOO) 3 
c(llOOOOOOo) 2 

c(lllOOOOOO0) 3 
c(10111010000) 5 

c(11111OOOoooo) 5 
c(10111101OOOOO) 6 

c(110010011OOOOO) 5 
c(110010010101ooo) 198 

c(lolllolooooooooo) 15 
c(1101011oooooooooo) 5 

C( 101000010010010000) 80 
c(lllOoOOOo0lOOOOOO0) 8 

c(1101110110) 7 
c(OOlOOOlOOlllllllll1) 12 

c(OOlOOllOOOOllOoOO1lOOlo) 8 
c(10011100001010110101000011100) 13 

“See Table 3. 
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-1 1 0 0 0 0 
101100 
011010 
010011 
011101 

_l 0 0 1 1 1 

(6.2) 

1 1 1 1 0 0 0’ 
1101011 
1000101 
1100100 
0011110 
0100110 

-0 1 1 0 0 0 1. 

(7.2) 

-0 1 1 1 1 0 0 0 
10110110 
11100101 
11011001 
10011111 
01101011 
01001100 

_o 0 1 1 1 1 0 l_ 

-0 0 0 1 1 0 0 1 
01110010 
00101110 
11001010 
01000111 
10110101 
10010111 

-1 1 10 1 10 l_ 

(8.2) (8.3) 

FIG.~ 2. Some record-holders (see Table 1). (7.2) and (8.2) are symmetric, but the 
other two are not. 

The final column of Table 1 is concerned with ( + 1, - 1) matrices. There 

is a standard mapping from (n - 1) X( n - 1) (0,l) matrices A to rr X n 
(+ 1, - 1) matrices @(A) with first row and column consisting of + l’s, given 

by 

08) 

where l=(l,l,..., 1) [6]. S-matrices and Hadamard matrices are related in 
precisely this manner, as we mentioned at the beginning of this section. The 
mapping is invertible, 

ldet (P(A)] = 2”-‘]det A], 09) 

and, if A - ’ exists, 

+(A)-‘= 
1 _ $lA-‘It’ ;lA-’ 

&A-‘lt’ _&A_’ 
I 

(20) 
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It seems likely (although we have not been able to give a proof) that 

A is a (0,l) anti-Hadamard matrix if and only if 

+(A)isa(+l, - 1) anti-Hadamard matrix. (21) 

Certainly the best (+ 1, - 1) matrices we have found are obtained by 
applying + to the best (0,l) matrices, as shown in the final column of Table 1. 
The table also suggests that 

an approximation that is explained by Equation (20). [For Eq. (20) implies 
that the sum of the squares of the entries of +(A)- ’ is equal to one quarter of 
the sum of the squares of the entries of A - ‘, plus a presumably smaller 
contribution from the first row and column of (P(A)-‘.] 

The results for circulant matrices are given in Tables 3 and 4, using the 
notation that a circulant matrix with first row (a,, a L,. . . , a,_ l)r and (i, j)th 

entry aj-r, the subscript being read modulo 12, is denoted by 

C(a,,a,,...,e._,). 

Remarks 
(1) The bounds given in Theorem 1 unfortunately do not determine the 

rate of growth of p(n), although the data in Table 1 suggest that even for 

Toeplitz matrices p(n) grows faster than c”. 
(2) Anti-Hadamard matrices of order tr G 5 can be put into Toeplitz form 

(Figure 1 and Table l), but not for n = 6,7 or (probably) any larger value of 
n. Indeed, the presumed anti-Hadamard matrices (6.2) and (7.2) have no 
apparent structure. At order 8 we have 

~L(n)>CL,(n)>~.,(n)>~Ll(n)>CLc(n) (n = 8). 

These strict inequalities almost certainly hold for all larger n, although this 
cannot be seen from Table 1, since for n > 9 we restricted our computer 
search to Toeplitz matrices. Toeplitz matrices have the advantage that pr( n) 
appears to grow very rapidly, and besides have been extensively studied [3, 4, 
13, 14, 19, 20, 26, 361. Unfortunately the best infinite sequence of Toeplitz 
matrices we have been able to construct [see Theorem 3 and Equation (33)] 
only has p(A) = ~(3.0796)“. The reader is invited to try and continue the 
sequence of matrices begun in Table 2. 
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(3) To make p(A) large, we must make (det A( small and the cofactors Aij 
large. In fact the matrices with the largest values of p(A), p,(A), and &A) 
always seem to have determinant f 1, although again we are unable to prove 
this. Any process that generates random-looking matrices with determinant 
+ 1 should make p(A) large. 

(4) Finally, we note the following useful identities: p(A) = p(At’) = 
Trace( AAT)- ’ = p( AU) = p(UA), where U is any orthogonal matrix. 

In the folIowing section we describe a number of applications, and then in 
Sections III-VII give the proofs of Theorems 1-5. The paper concludes with 
a list of open problems. 

II. APPLICATIONS 

Ill-Conditioned Matrices 
Our results can be applied directly to discover how ill conditioned a (0,l) 

matrix of order n can be. The M- and Ncondition numbers of a (0,l) matrix A 
are (in the notation of Section I) 

M(A) = nmax)aijlmax)b,i) = nx(A) 

and 

(see [22], [31], [32]). Then Theorem 1 implies that the largest M-condition 
number of a (0,l) matrix lies in the range 

cn(2.274)” $ M(A)4 2n s 
( 1 

n/2 
, 

with a similar result for the N-condition number. Although ill-conditioned 
matrices have been studied by many authors [5, 12, 371, these results appear 
to be new. 

Weighing Designs and Spectroscopy 
If an invertible (0,l) matrix A is used as a weighing design (for weighing 

smaU objects, or in spectroscopy), then under suitable conditions the mean 
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squared error in the measurements is reduced by a factor of n/p(A) [I, 16, 
25, 27-291. If A is chosen to be an S-matrix, this is a reduction by about n/4 
[using (I)], a substantial improvement. On the other hand, Theorem 1 shows 
that illchosen weighing designs can greatly increase the errors, and Theorem 
4 shows that circulant matrices (which are the ones used in practice) can also 
be bad. 

The Hyperplurw Problem 
The problem of maximizing x(A) or p(A) is related to the following 

simple geometrical question. Consider the cube in n-dimensional Euclidean 
space whose vertices are all 2” vectors of O’s and 1’s. Take any n vertices of 
this cube, and consider the hyperplane H passing through them. The problem 
is to determine how close H can be to the origin (with the optimal choice of 
the original n vertices), without actually passing through the origin. 

Lettheanswerbe S(n),andletthe nverticesbe(ai,,...,ai”), l<i<n. 
The equation to the hyperplane is 

=11 

a21 

det 

a tI1 

L Xl 

. . . 

. . . 

. . . 

. . . 

. . . 

al, 

azn 

a nn 

x72 

1 

1 

= 0 

1 

1 

(since this vanishes at the n vertices). When expanded this reads 

where 

CIXl + *. . + c,x, + x0 = 0, 

c,=detA, 

cj= i A,, (l&j<n), 
i-l 

where A = (aij) and Ajj is the (i, j)th cofactor of A. The distance 
hype&me to the origin is [2, p. 361 

from this 

(23) 
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where B = ( bij) = A-‘. Therefore H does not pass through 0 provided that 
det A z 0. To find S(n) we must choose an invertible (0,l) matrix to 
maximize (23). From Theorem 1 we have 

while the triangular matrices t, given in Section VI imply S(n) < c 1.618”. 

Sums of Roots of Unity 
Since the eigenvalues of a circulant matrix with first row (a,, a 1,. . . , a n _ 1) 

are the numbers CS:,jcjwjk, k = O,l,. . .,n - 1, where o = ezni/” [8] the 
problem of finding x,(n) can be restated as follows: What is the smallest 
magnitude of any nonvanishing sum of distinct nth roots of unity? Theorem 5 
gives the best bounds we have been able to obtain. 

Other Applications 
Finally, XT(n) and i+(n) (referring to Toephtz matrices) are reIevant for 

studying Padi: approximations and the Euclidean algorithm, via the connec- 
tions between these problems and the solution of Toeplitz equations [4, 201. 

III. UPPER BOUNDS 

Let A be any n X n invertible (0,l) matrix, with inverse B = ( bi j). Then 
Jdet AJ 2 1, and ( bi jl G f( n - l), where f(n) is the greatest determinant of 
any n x n (0,l) matrix. From Hadamard’s inequality [6, 22, 231, f(n) 6 
2-yn + l)(“+w, which implies x(n)= max(bij] G 2(n/4)n’2. The rest of 
(8), (9) now follow from (5), (7). Of course the same bounds also apply to 
symmetric, Toephtz, and circulant matrices. 

If A is an n x n (+l, - 1) matrix, then ldet A] > 2”-’ by (lQ), and 
I bi j I Q 2-(“- ‘)g( n - l), where g(n) is the greatest determinant of any n X n 
(+ 1, - 1) matrix. From Hadamard’s inequality, g(n) < n’@, which implies 
x,(n)=max]bij]~[(n-1)/4](“-‘~~2. The rest of (lo), (11) follow from (5), 

(7). 

IV. AN ITERATIVE CONSTRUCTION FOR SYMMETRIC MATRICES 

We will prove the second half of Theorem 1 by constructing an infinite 
sequence A,,, A,, A,,. . . of symmetric (0,l) matrices whose inverses contain 
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large entries. We must first introduce the notion of a well-signed matrix X and 
its associated (0,l) matrix P(X). A real n X n matrix X = (xij) is said to be 
well signed if the componentwise product of any two rows does not contain 
both positive and negative entries. Stated informally, each row either has the 
same signs as the first row, or the opposite signs. For examples see (29), (34). 
If the entries of X are nonzero, we define a (0,l) matrix P(X) by P(X), j = 1 if 
xij > 0, = 0 if xii < 0. 

However, if X contains zero entries, the definition of P(X) is more subtle. 
Let X* = (sgn(x, j)), where 

i 

1 if x>o, 
sgn( x) = 0 if x=0, 

-1 if x<O. 

It is not difficult to see that if X is well-signed and symmetric, it is possible to 
find (in perhaps more than one way) a vector t = (tl, tZ,. . . ,t,) with each 
t, E { + 1, - 1) and a number a E { + 1, - l} such that X* can be obtained 
by forming the (+ 1, - 1) matrix att’t and replacing some entries by zero. To 
get P(X) we replace every - 1 in att’t by 0. [For an example see (29), (30).] 

LEMMA 6. Zf X is symmetric and well signed, then so is Y = XP(X)X, 
and P(Y)= P(X). In fact 

Yij = 
i 

?ri7fj + vivj if P(x),j = 1, 

llivj + vinj if P(X)ij=O, (24) 

where vi is the sum of the positive entries in the i th row of X, and vi is the 
sum of the negative entries. 

The straightforward proof is omitted. We also record the fact that XP(X) 
has rank d 2, and trace equal to r1 + . . . + r,,, the sum of all the positive 
entries in X. Therefore the eigenvalues of XP(X) are h,, h,,O,. . . ,O, with 
x, 2 l&l 2 0. 

We can now state the construction. Let A, be an n, X n, symmetric (0,l) 
matrix with determinant + 1 and possessing a well-signed inverse. Then 
define 

0 
A,= 

Ak-l 

Ak-, 1 P(A,&) ’ 
k=1,2,.... (25) 
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Clearly A, has order 2kn,, determinant f 1, and inverse 

(26) 

The reason the construction works is that in the product 
- A~!rP(A~?r)A~!r, the middle term P(Ai!r) matches up the positive and 
negative entries of A;?r [using (24)] so as to maximize the entries of A; ‘. The 
following theorem gives bounds on the entries of Ak ‘. 

THEOREM 7. Assume Ai ‘P(A;‘) has two distinct nonzero eigenvalues 
A,, h, with h, > 1x,(. Then X(Ak) (the greatest entry of Ai’) lies in the range 

where n = 2kn, is the order of A,, p1 = A1pO, and p2 = [4n~x(A,,)]‘/“~. 

Proof. 

by 

For the lower bound we define matrices D, = (dji’) of order no 

D,=A,‘, D, = Dk_lPDk-,, (28) 

where P = P( Ai ‘). By Lemma 6 all the Dk are symmetric and well signed, 
and P( Dk) = P. The entries of D, are built up from the entries of D,_ 1 in the 
same way that A;’ is formed from Ak=ll, except that there is less buildup in 
D,. In particular, for every k there is an no X n, submatrix (sii) of Ai1 with 
]sij] > Idij’l for all i, j. The solution of (28) is 

Dk = (Dop)2k-‘Do, 

and, writing D,P = UAW’ where A = diag(h,, A,,O,. . . ,O), we obtain 

d::‘= cJ;~-~ + c2htk-l, 

which implies the left-hand side of (27). 
For an upper bound, by definition the entries of A;’ do not exceed 

m0. . = x( A, ). Replacing Ai ’ by m, I in (26), we find that the entries of A ; ’ 
do not exceed ml = n%m& and, continuing in this way, that the entries of Ak ’ 
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do not exceed mk = (2k-1n,)2m~-1. Solving for mk, we find 

mk= 
(4n;m0)21 

4k+lnB ’ 
0 

which establishes the right-hand side of (27) and completes the proof of 
Theorem 7. n 

EXAMPLES. By reflecting a Toeplitz matrix in a horizontal mirror we 
obtain a symmetric matrix, known as a Hankel or orthosymmetric [26] matrix. 
For the first example we take as A,, the Hankel matrix corresponding to (4.1): 

A,= [i ; ; ;I, A,‘= [j -; _; I;]. (29) 

A;’ is well signed and symmetric, and we may take t =(l, - l,l, - l), 

a = 1, so that 

[ 1 -1 1 -1 
&t -1 1 -1 1 0 1 0 1 = i 

1 -1 1 -1 
P(A,') = 

-1 1 -1 1 I2 
(30) 

Then 

a rank-2 matrix with nonzero eigenvalues h = 7.162. . . , h 2 = 0.638. . . , and the 
construction produces a sequence of matrices A, with 

Although in general (0,l) Toeplitz or Hankel matrices do not have 
well-signed inverses, Toeplitz matrices for which p(A) is large (those in Table 
2 for example) do seem to have this property. If the corresponding Hankel 
matrix is used as A, in the construction (25), we find that A, Z+ h,, and 
therefore h, is approximately equal to the sum of the positive entries of A< r. 
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A computer search based on this observation produced the following Toephtz 
matrix of order 17: 

T(11111101001100011111101001OcKNOOO). (31) 

We take A,, to be the Hankel matrix corresponding to (31), and find 
h, = 1.165... x lo’, h, = - 2.90... . Then A, has order n = 17~2~, and 

~(2.274)” < x(AL) =$ c(2.8!90)“, (32) 

which establishes the first assertion of (11). The rest of (10) and (11) follow 
from (2), (4), (7), completing the proof of Theorem 1. To get the lower 
bounds in Theorem 2 we use the symmetric ( + 1, - 1) matrices @(Ak). 

V. TOEPLITZ MATRICES 

In this section we exhibit a sequence {T, } of Toephtz matrices whose 
inverses contain large entries. T, is the following Toeplitz matrix of order n: 

T,, = T(. . .110011001101OOOOO.. .), (33) 

where the bold 1 indicates the entry on the main diagonal. For example 

T8 = 

T;‘= 

-1 1 0 1 0 0 0 0 
01101000 
00110100 
10011010 
11001101 
01100110 
00110011 

-1 0 0 1 1 0 0 1 

-1 -2 -3 -5 -9 12 -7 16 
1 1 1 2 4 -5 3 -7 

-1 -1 -2 -4 -7 9 -5 12 
1 1 2 3 5 -7 4 -9 
0 1 1 2 3 -4 2 -5 
0 0 1 1 2 -2 l-3 
0 0 0 1 l-l l-2 
0 0 0 0 1 -1 1 -1 

* (34 
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In order to describe T; ’ we define two sequences of integers { p,, }, { 9n } by 

fl 0 1 2 3 4 5 6 7 8 9 10 . . . 
P, 1 1 2 3 5 9 16 28 49 86 151 . . . 

9n 0 1 1 2 4 7 12 21 37 65 114 . . . 

and 

Therefore 

P”=Pn-l+9,-, (n 2 11, 

9n =9,-l + Pn-2 (n>3). 

and so 

P, = 2Pn-, - Pn-2 + Pn-3 (na4), 

9n = 29,-l - 9n-2 + 9nm3 (n>4), 

P” = 0; + o(l), 9” = C’P; + o(l), 

where p3 = 1.75488. - . . is the largest zero of x3 - 2x2 + x 1. 

THEOREM 8. det T, = + 1, T;’ is as shown in Figure 3, x(T,)= p,_,, 
and /.A( T,) > cp;“. 

Proof. The determinant and inverse can be calculated by Trench’s 
algorithm [33, 341 for inverting a Toeplitz matrix. Using Zohar’s description 

- P2 -p, ... - P”V4 - PV3 qn-2 - 4n-1 P,-2 

1 41 Q2 ..’ s-5 %v4 - Pn-4 P,-s -qnml 

-1 - 92 -q3 ..’ - qn-4 - qn-3 P,-3 - Pe4 qta-2 

1 PI P2 ... P”_, P,, 4 - 4nm:3 s-4 - Pn -- 3 

0 1 p, ... p,_, .” 

0 0 1 ... 
. . . 

FIG. 3. The matrix T,;‘. This is persymmetric, i.e. is symmetric about the 
diagonal extending from the top right-hand comer to the bottom left-hand comer. 
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[38] of this algorithm one finds (in his notation) 

qli=pi and yi=O (i>3), 

x, = x, = 1, hi= -1 (i>3), 

so det T,, = rIhi = _t 1, and, for i > 4, 

gi= [ -l,l,l,O ,..., oy. 

The inverse matrix can now be easily obtained. The largest entry is in the top 
right-hand comer, and p(T,)=pf_,+2&,+ ..a >p,f_2=c"pi". This 
completes the proof of Theorems 3 and 8. W 

REMARK. One can show chat any infinite sequence of Toeplitz matrices 
in which there are only a fixed number of nonzero rows above the main 
diagonal [such as (33)] satisfies p(A) < p”, for some constant p. 

VI. TRIANGULAR MATRICES 

Consider the n x rr triangular matrix’ 

t,=T(0...01101010...), (35) 

having inverse 

t,-’ = T(O,..., O,l, -F,, F,, -F,,...,+ F,_,). (36) 

For example 

110101 
011010 
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ti’ = 

-1 -1 1 -2 3 -5 
0 1 -1 1 -2 3 
0 0 1 -1 1 -2 
0 0 0 1 -1 1’ 
0 0 0 0 l-l 

LO 0 0 0 0 l_ 

Then x(t,) = Fn_2, and &t,)= F,2_, +2F,“_, + . * . + n, which with the help 
of the identity [7] 

F,2+F;+ ... +F,2=FnFn+, 

may be simplified to 

&,)=F,2_1+n+$[(-l)R-1]. (37) 

We shall show that t, is optimal in the sense that x,(n) = x( t, ) and 
p,(n) = ~(t,,) for all n, thereby establishing Theorem 4. At the same time we 
shah prove the following result about (0,l) determinants. 

LEMMA 9. Let h(n) be the greatest determinant of any n X n (0,l) 
matrix A = (a i j) in which all entries above one row beyond the muin diagonal 
are zero (thus aij=O if j-i>, 2). Then h(l)=1 and h(n)= F,_, for 
n = 2,3,... . 

We also set h(0) = 0. Clearly h(n) is monotone: 

h(n)<h(n+l). (38) 

Let A be any upper triangular invertible n x n (0,l) matrix, with inverse 
B = (bij). By examining the cofactors of A we find that 

(bijl< h(j - i)> (39) 

and therefore 

(40) 

Now suppose A is such that x(A) = x,(n). By (38) and (39) we may 
assume b,, is the greatest entry in A- ‘. (38) and (39) also imply 

xt(n) = h(n - 1) foralln. (41) 
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(a) 

(b) 

0 

1 

0 

0 

1 

* 

1 

FIG. 4. (a) Using row operations we put A into this form. (b) Then A-’ is as 
shown. 

b,, may be found by the following procedure. We subtract certain of rows 
2 ,..., n-l fromrow 1, thencertainof rows3 ,..., n-l fromrow2, andso 
on until A has been transformed into the form shown in Figure 4(a). If the 

last column of this matrix is (2)1,u2,...,2),_1,1)tr, then (;- ulr - u2 ,..., 
- u, _ 1, 1) is orthogonal to the rows of A, and is in fact the last column of A - ’ 

[Figure 4(b)]. In particular b,, = - vl. 
It is not difficult to keep track of how the top right-hand entry of A 

changes during the subtraction process. At the rth step rows 2,. . . , r + 1 have 
been used to make the top row equal to 

(1,o ).‘.) O,XI )...) 

with r initial O’s, and one can show by induction that either x, E [ - F,_ 1, F,] 
or x, E [ - F,, F,_ J. Therefore Ix,.] 6 F,, and when the procedure terminates 

Ix,-21 = lvil= Ih,l~ Fn-2. S ince the matrix t, attains this bound, we have 
proved (14), and [by (41)] L emma 9. Finally (15) follows from (40), complet- 
ing the proof of Theorem 4. 

VII. CIRCULANT MATRICES 

We have been less successful in constructing circulant matrices and are 
only able to establish the lower bounds of Theorem 5 by an existence 
argument. 



134 R. L. GRAHAM AND N. J. A. SLOANE 

We shall show that if n = 2p, p prime, there is a circulant of order n with 
an eigenvahre of magnitude less than cn2-“18. Thus h,(n),< cn2-“‘8, and 
then the rest of (16), (17) follow from (2), (5), (7). Let 8 =277/p, o = eie. 
Since p is a prime, the numbers 1, w, w2,. . . , wpp2 are independent over the 
integers. Consider the 2” ’ sums 

where r = [p/4] and each a i E (0, l}. These sums are distinct and he in the 
range [0, bp + 11. By the pigeonhole principle, there is a pair of such sums 
X,Y (say) with 

Since - 1 is an nth root of unity, X - Y is (after canceling common terms) a 
nonzero sum of distinct nth roots of unity, as required. 

The following is an explicit construction for a circulant with a nonzero 
eigenvalue of magnitude 

O( n- “‘““2”) 
(42) 

(which of course is not as good as the circulants guaranteed by the preceding 
argument). Again we take n = 2p, p prime, and let # = 2-r/n. Also let w(k) 
denote the number of l’s in the binary expansion of k. Then it is an amusing 
exercise to show that the sum 

w(k - ‘)cos k$ 

is bounded above by (42). 

VIII. OPEN PROBLEMS 

(1) Improve the bounds of Theorems 1-5. In particular, is the true rate of 
growth of p(n) equal to O(c”) or O(n”)? 

(2) Is it true that (+ 1, - 1) anti-Hadamard matrices are given by (21)? 
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(3) Show that a matrix attaining any of p(n), p,(n), or p*(n) has 
determinant f 1. Must it have a well-signed inverse? 

(4) Find other infinite sequences of (0,l) Toeplitz matrices with determi- 

nant t 1 [besides (33)]. 
(5) If an invertible (0,l) matrix A is chosen at random, what is the 

expected value of p(A)? 

We are gratefil to a number of colleagues, especially A. M. Odlyzko, 
.I. Reeds, and H. S. Witsenhuusen, for useful discussions. The computations 
were perfomted using a variety of programs, including EISPACK [30], HEMP [9], 
MACSYMA [24], and PORT [lo], and we should like to thank the M.I.T. 
Laboratory for Computer Science for permission to use MACSYMA. The bulk of 
the calculations were perjbmed on the Bell Labs Gray 1 computer u-sing 
L. Kauj%uzn’s linear-equation package [21]. 
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