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Introduction

Our graphs are ‘Michigan’ except that they have vertices and edges rather
than points and lines. If G is a graph then n = n(G) denotes the number of its
vertices, « = a(G) denotes the size of its largest stable (independent) set of
vertices and o = w(G) denotes the size of its largest clique. The graphs that we
are interested in have the following three properties:

(i) n=aw +1,

(i) every vertex is in precisely a stable sets of size & and in precisely w cliques
of size w,

(iii) the n stable sets of size @ may be enumerated as S,, S5,...,S, and the n
cliques of size w may be enumerated as C,C,,...,C, in such a way that
S:iN G = for all i but S; N C;# @ whenever i# j.

We shall call them (e, w)-graphs. This concept, contrived as it may seem at
first, arises quite naturally in the investigations of imperfect graphs; we are about
to explain how.

In the early 1960’s, Claude Berge [1], [2] introduced the concept of a perfect
graph: a graph is called perfect if and only if, for all of its induced subgraphs H,
the chromatic number of H equals w(H). Berge formulated two conjectures
concerning these graphs:

* Reprinted from Discrete Math. 26 (1979) 83-92.
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(I) a graph is perfect if and only if its complement is perfect;

(I1) a graph is perfect if and only if it contains no induced subgraph
isomorphic either to a cycle whose length is odd and at least five or to the
complement of such a cycle.

The concept of a perfect graph turned out to be one of the most stimulating
and fruitful concepts in modern graph theory. The weaker conjecture (I), proved
in 1971 by Lovdasz [10], became known as the Perfect Graph Theorem. The
stronger conjecture (II), still unsettled, is known as the Perfect Graph Conjec-
ture.

A graph is called minimal imperfect if it is not perfect itself but all of its proper
induced subgraphs are perfect. Clearly, every cycle whose length is odd and at
least five is minimal imperfect, and so is its complement. The Perfect Graph
Conjecture asserts that there are no other minimal imperfect graphs. The first
step towards a characterization of minimal imperfect graphs was made again by
Lovasz [11]: every minimal imperfect graph satisfies n = aw + 1.

It follows from this that, in a minimal imperfect graph G,

for every vertex v € G, the vertex set of G —v can be
partitioned into « cliques of size w, and into @ stable sets of
size a.

Further refinements along this line are due to Padberg [12]: every minimal
imperfect graph is an (a, w)-graph. (Bland et al. [3] strengthened Padberg’s
result by proving that every graph satisfying (1) in an (a, w)-graph.) Hence
characterizing (a, w)-graphs might help in characterizing minimal imperfect
graphs.

It is easy to construct (a, w)-graphs for every choice of @ and w such that
a =2 and o =2: begin with vertices vy, v,..., w.+1 and join v; and v; by an
edge if and only if |i — j| < w — 1, with subscript arithmetic modulo aw + 1. The
resulting graph, denoted by Ci.l,, is an (@, w)-graph. If w =2 then Ci,} is
simply the odd cycle Ci.41; if @ =2 then Cg.., is the complement of the odd
cycle Coiir. If @ =3 and w =3 then Cg, 1, contains several pairs of nonadjacent
vertices v, w such that joining v to w by an edge destroys no stable set of size «
and creates no new clique of size w. Hence the graph obtained by joining v to w
is again an (a, w)-graph. However, calling this graph new smacks of cheating: the
structure of the largest stable sets and of the largest cliques has remained
unchanged. To avoid such quibbling, we shall consider normalized («, w)-graphs
in which every edge belongs to some clique of size w. (As we shall see in a
moment, every (&, w)-graph contains a unique normalized (a, «)-graph.) The
purpose of this note is to present two different methods for constructing
normalized (a, )-graphs other than C%.%,. The smallest of these graphs is the
(3,3)-graph shown in Fig. 1. (This graph and the (4,3)-graph of Fig. 4 were
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Fig. 1.

independently presented in [3] as examples of (a, w)-graphs different from
Cihi; see also [9].)

The problem of characterizing all the normalized (a, w)-graphs can be given at
least two additional interpretations. First, with each (a, w)-graph we may
associate two zero-one matrices X, Y of dimensions n X n such that the rows of
X are the incidence vectors of the stable sets S, S, ..., S, and the columns of Y
are the incidence vectors of the cliques C,, C,,..., C,. If T denotes the n X n
identity matrix and if J denotes the n X n matrix filled with ones then clearly

JIX=XI=alJ, JY=Y]=w], XY=J-1 2)

In the terminology of Bridges and Ryser [4], the matrices X and Y form an
‘(n,0,1)-system on a, w’. Conversely, with each pair of zero-one matrices X, Y
satisfying (2), we may associate a graph G with vertices vy, v,, . . ., v, such that v,
is adjacent to v, if and only if Y,; = Y,; =1 for some j. Let us show that G is a
normalized (e,  )-graph. To begin with, each column of Y generates a clique of
size w in G and, since XY is a zero-one matrix, each row of X generates a stable
set of size @ in G. To show that G has no other cliques of size w, consider an
arbitrary clique of size w and denote its incidence vector by d. Clearly, Xd is a
zero-one vector. In fact, since J(Xd) = (JX)d = aJd, the vector Xd has aw =
n —1 ones and one zero. Hence Xd is one of the columns of J — I = XY. Finally,
since X is nonsingular, d must be a column of Y. A similar argument shows that
every stable set of size a in G arises from some row of X. Hence G is an
(@, w)-graph; since each edge of G belongs to some clique of size w, G is also
normalized.
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The matrix interpretation makes it easier to clarify the role of normalized
(o, w)-graphs. Consider an arbitrary (@, w)-graph G and delete all those edges
which belong to no clique of size w. To show that the resulting graph H is an
(a, w)-graph, it will suffice to show that every stable set of size « in H was also
stable in G. Beginning with G, define X and Y as above; in addition, let d
denote the incidence vector of an arbitrary stable set of size @ in H. Since the
cliques of size w are the same in G and H, the vector dY is zero-one. Since
(dY) =d(YJ)= wdl], the vector dY is one of the rows of XY. Since Y is
nonsingular, d is one of the rows of X, which is the desired conclusion. Hence H
is the unique normalized (a, w)-graph contained in G.

In the next section, we shall make use of the fact that the equations (2) imply

YX=X"'XYX=X"'J-DX=X"IX-1=J-1

(The above observations are due to Padberg [12].)

Before proceeding, let us point out a simple fact which may be useful in
constructing (a, w)-graphs. For the moment, we shall refer to each pair of
matrices (X, Y) satisfying (1) as a solution. Now, let r and s be positive integers
such that r + s = n. Let A, A* be n X r matrices, let B, B* be n X s matrices, let
C, C* be r X n matrices and let D, D* be s X n matrices. Finally, let us write

Xi=(A,B*), X.=(A*,B), X:=(A,B), X.=(A* B*)

-5 1e(5): we(5). v (52)

We claim the following:

and

if (X1,Y3), (Xa, Y2), (X5, Ys) are solutions then (X, Y.) is a solution.
The proof is straightforward: since

X\ Y1=AC+B*C*=J—-1,

XY, =A*C*+BD =7 -1,

X;Y;=AC+BD =J -1,
we have AC=A*C*, BD =B*D* and so

XY, =A*C*+B*D*=J—-1

Similarly, the equations JX,=X,J =aJ and JY,= Y.J = wJ follow quite
routinely. It may be also interesting to note that:

if (Y, Xy), (Y2, X2), (Y3, Xs) are solutions then (Y,, X,) is a solution.
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The point is that the equations
JYk = YkJ = a], ]Xk = Xk], Yka = ]_I

imply X, Y. =J—1 for each k =1,2,3. Now X,Y.=J —1I as above, and so
Y.X.=J-1L

An alternative interpretation of (@, w )-graphs concerns a packing problem.
With a slight abuse of the standard notation, let K, denote the directed graph on
n vertices such that, for every ordered pair of vertices v and w, there is a
(unique) directed edge from v to w. Similarly, let K,. denote the complete
bipartite graph in which each edge is directed from the a-set. As above, let n
stand for aw +1. We claim that normalized (a, w)-graphs correspond to
partitions of the edge-set of K, into n disjoint copies of K... With every such
partition, one may associate n X n matrices X, Y such that the j-th column of X
is the incidence vector of the a-set of the j-th copy and such that the i-th row of
Y is the incidence vector of the w-set of the i-th copy. It is not difficult to verify
that these matrices satisfy (2), Conversely, with every pair of zero-one matrices
satisfying (2). one may associate a partition of K, into n disjoint copies of K,
by making the directed edge v, belong to the k-th copy if and only if
Xi =y, = 1. Incidentally, if the directions of the edges are ignored then these
partitions become covers of the undirected K, by n copies of undirected K,
such that each edge is covered precisely twice. Designs of this kind have been
studied by C. Huang and Rosa 6], [7], [8].

Finally, let us return to the link between the problem of characterizing
(@, )-graphs and the Perfect Graph Conjecture: it is not clear that a solution to
the former would indeed help to settle the latter. In fact, Tucker [13] succeeded
in proving the Perfect Graph Conjecture for all graphs G with w(G) = 3 without
characterizing (e, 3)-graphs. By virture of Padberg’s theorem the Perfect Graph
Conjecture may be stated as follows:

every (a, w)-graph G with @ =3 and © =3
contains a smaller induced imperfect graph.

We shall say that an (@, w)-graph G is of type I if it contains aset W of a + & — 1
vertices such that W N S# @ for all stable sets of size @ and W N C# @ for all
cliques of size . Otherwise we shall say that G is of type IL It is easy to see that
every (a, w)-graph of type I contains a smaller induced imperfect graph (namely,
the graph G-W with (¢ —~1)(w—1)+1 vertices and a(G-W)=
a —1, w(G — W)<w —1). Hence the Strong Perfect Graph Conjecture would
follow if every (a, w)-graph with & =3 and w = 3 were of type 1. Unfortunately,
this is not the case: the (4,4)-graph constructed in Section 2 of this paper is of
type IL. (In [5], it has been shown that every C%,}, with @« =3 and w =3 is of
type 1.)
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1. The first method

Each graph C{.7).+1 can be seen as arising from Cé,}, by a simple construc-
tion which, vaguely speaking, leaves most of the graph unchanged and increases
the total number of vertices by w. We are about to show that the same
construction applies in a more general setting: if some set of 2w — 2 vertices of an
(a, w)-graph G induces a subgraph resembling a piece of Ci ' then a simple
local change in G creates an (« + 1, w)-graph H. More specifically, the proper-
ties required of the 2w —2 vertices vy, v, ..., 02,— in G are that

each of the sets C. ={vis1, Ukizy -y Ukia}
with k =0,1,...,0 —2 is a clique,

and that

for each k =2,3,...,w — 1, either C,_, is one
of the « cliques partitioning G — vx_; or else
C._, is one of the a cliques partitioning G — v, +k—i-

The graph H has @ new vertices ay,a,...,a, in addition to the old aw +1
vertices of G. The adjacencies in H are best described in terms of its cliques of
size w. First of all, we delete edges which belong to the @ — 1 cliques Ci specified
above and no others. Each C; is replaced by two cliques,

Ci.= {Uk+1, U425« oo 5 Vo—1, Q15 A2y -« - ak+1},
Z: {ak+2, ak+3, cesey aw, Uw, e vy de,k}.

Finally, we introduce the clique C* ={a,, as, ..., a.}. In case w = 3, the passage
from G to H is schematically illustrated in Fig. 2.

Before proving that H is indeed an (a + 1, w)-graph, let us consider a few
examples. To begin with, take G = C7 and consider four consecutive vertices in
the natural cyclic order. If these four vertices are labeled as vy, v;, vs, v4 then
H = C3; however, if they are labeled as vy, vs, v, vs then H is the graph of Fig.

L~ N

V4 v2 v3 v4

TSNS~

V1 Vo aq as as v3 vy4

Fig. 2.
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1. Next, let G be the graph of Fig. 1. The three choices
(1, 02, 03, 04) =(0,1,2, 3),
(v1, 02, 03,04) = (2,0, 1,9),
(v1, 02, 03, 04) = (3,1, 2,0),

lead to the (4,3)-graphs shown in Figs. 3, 4 and 5. These three graphs together
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with C3, and the graph shown in Fig. 6 are in fact the only normalized
(4,3)-graphs.
Now, let us establish that:

for every vertex v € H, the vertex set of H—v
can be partitioned into @ + 1 cliques of size w. 3)

First, we consider the case v € G. By (2), the vertex set of G —v can be
partitioned into a cliques of size w. If one of these cliques is some Ci then
replace this C by Ci and C%; otherwise simply add C* to the a cliques. Second,
we consider the case v& G. Now v = a, for some k. If 1 <k < w then, by the
assumption, either C = C;_, belongs to the partition of G — v orelse C = G,
belongs to the partition of G — v..« 1. In either case, replacement of C by Ci-»

Fig. 6.
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and Ci_, yields the desired partition of G — q.. Finally, if k =1 then add C} to
the partition of G — v, ; if k = then add C’_, to the partition of G —v,,_,.

With the help of (3), proving that H is an (« +1, w )-graph becomes a routine
matter. Let n stand for (a + 1)w + 1 and let Y denote the n X n zero-one matrix
whose columns are the incidence vectors of the (@ = 1w +2 cliques of size w
inherited by H from G and of the 2w — 1 new cliques C*, Ci, Ct, 0<k <
@ — 2. By this definition and by construction of H, we have JY = YJ = wJ. By
(3), there is an n X n zero-one matrix X such that YX =J—] and JX =
(a +1)J. As we have seen in the preceding section, these equations imply
XY =J - I In addition,

n-—1

XJ=%X(YJ)=%(]—I)J.= J=(a+1)J

Since each edge of H belongs to some clique of size w, the rows of X are the
incidence vectors of stable sets. As in the preceding section, H had no other
stable sets of size a +1. Hence H is an (a + 1, w)-graph.

2. The second method

It seems that characterizing all the (a, w)-graphs may be a rather difficult
problem. At the moment, we can’t even characterize those (@, w)-graphs which
have circular symmetries. For these graphs, the associated matrices X, Y assume
the form

X=>2Z, Y= 27
j€EA /€B
where Z is the permutation matrix of a cycle and
|Al=a, |B|=w. “
The condition XY =J —1I reduces to
A+B={1,2,...,aw} 5)

with addition modulo n = aw +1. The graphs C2.%, correspond to, say,
A={12,...,0} and B ={0, 0,20,...,(a —1w}. We are going to describe a
more general class of solutions A, B to (4) and (5). Consequently, we shall obtain
new (a, w)-graphs with circular symmetries.

When n —1=mm,- - - m for some integers m; greater than one, then we can
consider the sets M, M,, ..., M, defined by

i—1
M, ={tn m,-:OSt<m.-} .
i=1

Clearly, 2_,M, ={0,1,....,n~2}. Now, if Ileem =a for some Sc
{1,2,...,k} then
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A=> M, B=1+ ; M,
i€S iZ£S
satisfy (4) and (5).
For example, if « = w =4 then n —1=2* and so we consider

{0, 1} +{0,2} +{0,4} +{0,8} = {0,1, ..., 15}.
Now we might choose

A ={0,1}+{0,2} ={0,1,2,3},

B =1+{0,4}+{0,8} ={1,5,9,13},
but instead we shall choose

A ={0,1}+{0,4} ={0,1,4, 5},

B =1+{0,2}+{0,8 ={1,3,9,11}.
The latter choice yields

X=Z+Z'+Z2'+Z°, Y=2'+Z’+Z2°+2Z".
The corresponding (4,4)-graph G has vertices vo, v1,. .., 016 such that v; and v
are adjacent if and only if

j—i€{2,6,7,8,9,10,11,15}

with arithmetic modulo 17. Clearly, this graph cannot be obtained by the method
of the preceding section.
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