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1. Introduction

Ramsey theory can be loosely described as the study of structure which is preserved under finite
decomposition. Its underlying philosophy is captured succinctly by the statement “Complete
disorder is impossible”. Since the publication of the seminal paper of Ramsey [R30] in 1930, the
subject has grown with increasing vitality, and is currently among the most active areas in
combinatorics. However, most of the recent work has focussed on far-ranging generalizations of the
original concepts, dealing for example, with extensions to n-dimensional vector spaces, (and their
cominatorial analogues, n-parameter sets), lattices, groups, various transfinite sets, induced and
restricted variations, etc. (cf. [GRS80}, [G83], INR78}, [NR79]). Progress on determining the
basic numbers themselves, the so-called Ramsey numbers r{k, £), has been painfully slow. We
recall that for positive integers k and £, r (k, £) denotes the Jeast integer n such that if the edges of
the complete graph K, are arbitrarily 2-colored, say with colors red and blue, then there is always
formed either a K; with all edges red, or a K, with all edges blue. (The existence of r(k, &) is
guaranteed by Ramsey’s Theorem.) For example, the first lower bound for r(k, k), due to
Erdds [E47], was published in 1947:

R Sy
(1.1) rlk, k) > (1 +0(1)) =5 k -2k,

In the 40 years since its proof, this bound has only been improved by a factor of 2!

However, some breakthroughs have occurred recently, such as the first significant improvement
on the upper bound

rte ) < (%22),

originally given by Erdds and Szekeres [ES35] in 1935. It is now known (cf.I[R]) that for suitable
positive constants ¢; and c,,

a2 rle, k) < e (3 2 1) ttog 0%,

(where all logarithms in this paper are to the base e). We will give a proof (Theorem 2.14) that
(1.3) rlk,k) <6 [zlgc:f]llog log k

for k sufficiently large.

In this paper, we will attempt to describe the current state of knowledge in this and some related
areas. We will usually not give the arguments which lead to the sharpest bounds known, but rather
we will concentrate on outlining some of the basic methods needed for the various improvements
discussed. We will, however, try to provide appropriate references to the sharper results when we
can.
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2. Asymptotic bounds on classical problems

In this section we will review a few basic bounds on the numbers r (k, £) and then outline some
very recent improvements.

2.1 Lower bounds
Theorem 2.1 [E47]

1 sk
r(k,k)>(1+o(1))eﬁk 2k2

Proof: We show that if
_[%
Q1) [,':] 2 <y

then in fact r(k, k) > n, i.e., there exists 2 2-coloring of K, containing no monochromatic Kj.
(This is clearly sufficient since a simple calculation shows that if (2.1) fails then

1
e 2

n >

+o(1)]k -2k

Consider a random 2-coloring of K,, where the color of each edge is chosen independently with
probability 1/2. Let T be a subset of the vertex set of size |T| = k. The probability of the event
Ar that the set [T]? of pairs of T is monochromatic is

Priap) =2'" HE

Thus, the probability of the event that for some k-element set T of vertices, the set [T is
monochromatic, is bounded above by

Hence, if (2.1) holds, then there must exist a 2-coloring of the edges of K, having no
monochromatic K. &

Note that this proof, which was one of the earliest uses of the “probabilistic method”, gives no
information about how such a 2-coloring might actually be constructed. The best constructive lower
bounds currently known (see (2.12)) are much weaker.

The bound in Theorem 2.1 has been improved slightly by Spencer [Sp75] to
@2 rlk, k) > (1 +0(1) %k ok
which is at present the sharpest known.

The proof of (2.2) is based on an ingenious probabilistic inequality of Lovdsz [EL75] known as
the “local lemma”. The setting for this result is the following. Let Q be a probability space and let
Ay, Ay ..., A, be events in Q. We say that the graph T' with vertex set {1,2,...,n} is a
dependence graph of {4}, A,, . . . , A,} if:

{i} not joined to J1, Jo, ..., J, * A; and Ay N A5, N - N Aj are independent .
Theorem 2.2 (Lovdsz local lemma). Let 4, A3, ..., A, be events in a probability space Q with
dependence graph I. Suppose there exist x, X3, . . . , X, with 0 < x; < 1 such that

Pr(A,-)<(1—x,) ij,1<i<n.
{i,jler
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Then
Pr(N4)>0.
i

The proof of this version can be found in [Sp77]. A slightly more convenient form of the local
lemma results from the following observation. Set

1—x;
Yi x,-Pr (Ai)
so that
o o-——l
! 1+y,Pr(4,) -~
Since 1 + z < exp(z), we have
Corollary 2.3.
Suppose A4, A,, ..., A, are events in a probability space having dependence graph T, and there
exist positive y,, y, . . . , y, satisfying
logy; > 3 y;Pr4;) +y;Pr(4,)
tijler
for1 i < n. Then
Pr(n4) >0.
i

We next illustrate the use of this result in deriving a lower bound for r(k, 3). The first bound
on r(k, 3), again due to Erdés [E61], was that r(k, 3) > ck?/(log k)? for a suitable ¢ > 0. The
following result gives the sharpest known bound currently known.

Theorem 2.4 [Sp77]

2.3) rk,3) >

1 2 2
57 + o(l)]k /(log k)2 .

Proof. The proof is a modification of that of Spencer [Sp77]. Let the edges of K, be independently
2-colored red and blue with the probability that an edge is colored red always being p. To each 3-
element subset of vertices S associate the event Ag that all the edges spanned by S have been
colored red. Similarly, to each k-eclement subset K associate the event By that all the edges
spanned by K have been colored blue. Observe that

rk,3) > n if Pr(\ A4s 0 M Bx) > 0.
S K

Let T denote the graph with [g] + [Z] vertices corresponding to all possible 45 and By, where
{4s, By} is an edge of T if and only if |S VK| > 2 Gi.e., the events Ag and By are dependent), and
the same applies to pairs of the form {Ag, A5} and {Bg, Bx). Let N, denote the number of
vertices of the form As for some S joined to some other vertex of this form (so that
Ngq = 3(n —2)), and let Nz, Ng4 and Npg be defined analogously. In this case, Corollary 2.3
implies:

If there exist positive p, y, z such that:
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p<l,

Q4 logy > yPr(Adg) (N, + 1) + zPr(Bx)N 3 ,

log z > yPr(dg)Ng, + zPr(Bg)(Ngg + 1)

then
rk,3>n.

Now,
() k
Pr(dg) =p®, Pr(By) = (1 ~p)? < exp _1’[2] .
Also, we have the bounds

va< [ <

k k
ne
‘",f'] 'Nw“<[7] ’

1

NM+1<3n,N,,.-[’z‘](n—k)+[’3‘]< k.

Set
p=cm 2, k =cnlogn
z = expleanQog n)d , y =1+

where ¢y, ¢3, ¢3, € are positive constants to be specified later. We now verify (2.4).
First, observe that

k
2Pr(By) max {N 5, Np4} < zPr(Bg) [L‘kﬁ]

o)

1- cica
2

< exp {nm(log m)2ics + ¢y
Thus, if

(2.5) ety

1—cicy
—=1 <0
2 ]

then the second line of (2.4) will hold for k large.
In a similar way, if in addition
Q.6 (1 +dcf e <24

then the last line of (2.4) will hold. Finally, by choosing

Cl-%+0(l),01-3\/§/2+0(1),03- 3;/5 +0(1),€-0(1)

appropriately, an easy calculation shows that (2.5) and (2.6) hold. This implies

114
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+0(1) |n12log n

3V3
k-[2

which in turn implies (2.3). »

We remark that in the same way the following more general result can be established.
Theorem 2.5 [Sp77]
Let £ 2> 3 be fixed. Then for a suitable constant ¢ = ¢ () > 0,
Qn rik, &) > c(kfiog k)“*vr2

The best available lower bound for general k and ¢ comes from the following result (by using
the probability method).

Theorem 2.6 [Sp75)

If for some p € (0,1) we have

2.8) [z]p(ﬂ + [Z](l -p) ) <1
then r(k,&) > n.

In particular, it follows from Theorem 2.6 that

/
@9 Pt > e[kt 252

for an absolute constant ¢ > 0. ErdGs conjectures that for fixed £,
rk, &) > k“V/(log k)**

for a suitable constant ¢, > 0 and k sufficiently large.
2.2 Constructive lower bounds

In the preceding sections, all of the bounds given were based on the use of the probability
method. As a consequence, the proofs do not produce any explicit colorings but rather, they only
prove that such colorings exist. To remedy this not entirely satisfactory state of affairs, attempts
have been made over the years to construct good colorings, unfortunately without much success. For
the case of r(k, 3), Erdds [E66] has given a construction which shows that

rik, 3) > keto®
where

-2 _log2 | _
a 3[1083—1°B2J 1.139...,

improving an earlier construction of his which gave a somewhat weaker result (cf. [ES7]). A
breakthrough for r(k, k) finally occurred several years ago, however, with the result of
Frankl [F77], who gave the first Ramsey construction which grew faster than any polynomial. In
this section, we will outline a more recent theorem of Frankl and Wilson [FW81] on set
intersections which yields the best constructive bound for r(k, k) currently available.

Theorem 2.7 [FW81]

Suppose Fis a family of k-sets of {1, 2, . .. ,n} such that for some prime power g,
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FFFeFF#=F = |FnF|#k (modgq).

Then
n
210 #< (")
Proof: Let Ay, Ay, ..., A {,,] be all the j-element subsets and B;, B,, . . ., B[,,] be all the i-element
j i
subsets of {1,2,...,n}, where i < j. Define the [': ] by [;’] matrix N(i, j) as follows: the
(u,v)-entry of NG, j)is1if B, C A,,and 0if B, &€ A4,,for 1l € u < [7], 1€y € [;’] Let
V denote the vector space (over R) generated by the row vectors V.V, ..., V[ n ] o
q—1
N{g =1, k). Of course
. n
.11 dim ¥V < [q—l]‘

1t is easy to check that
k

NG,q—DN(GGg—1,k) = {q k1L ,.] NG, k).
Thus, for 0 < i < g — 1, the row vectors of N (i, k) belong to V.
Consider the product
MG, k):=NG K)'NG, k) .
|4, N4, ]
The (u,v)-entry of the [Z] by [Z] matrix M, k) is i for 1 €u, v < [z]

Moreover, the row vectors of M (i, k) are linear combinations of the rows of N(i, k), and
consequently, belong to V.

Now, choose real numbers g;, 0 < i < g, so that

"Taf)- 75T

=0

g-—-1
Set M : = 3 a;M (i, k) where addition is performed componentwise, i.e., the (u, v)-entry of M is
i=0

qg-1
m@u,v) =3 a;

i=0

l4,n4,
i

It follows from the definition that the row vectors of M are in ¥, and consequently

rank M < dim V.

Let M (& denote the minor of M spanned by the elements m(u, v) for which 4,,4, € & Since
for ¢ = p% p prime and « 2> 1, we have

[qgl] = 0(mod p) iff @ # — 1 (mod ¢)
then it follows that

m(u,v) = 0(mod p) for u # v ,and

m{u, u) & 0(mod p) .
Thus, det M (A # 0(mod p) and so,
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|91 = rank M (F < rank M < [ 7]

as required. ®
Corollary 2.8.

Let g be a prime power and form the graph G = G (n, ¢) with vertex set
VG ={F c{1,2,...,n}:|F|=¢g2 -1}

and edge set
E@G) =([F,F}:|FnF'| £ —1 (mod ¢)} .

Then neither G nor its complement G' contains a complete subgraph on more than [ q " 1]
vertices.

Proof: If Fy F,, ...,F, forms a complete subgraph in G then |F, NF;| # — 1 (mod q) for every
i # j, and so, by Th. 2.7, we have the desired conclusion. If F, F,,...,F, forms a complete
subgraph in G then

for i # j. However, we can now apply the following result of Ray-Chaudhuri and Wilson [RW75]
(which can be proved along the lines of Theorem 2.7):

If Fis a family of k-sets of {1, 2, ...,n} and
s:=|(|[FNF'|:F,F ¢ &, F = F}|

then
Thus,

in this case as well, and the Corollary is proved. ®
Choosing n = p3, ¢ = p, we obtain

2.12) rk, k) 2 exp((1 + 0(1)) log?k /4 log log k)

which is the best constructive lower bound on r (k, k) currently known.

A graph which has often been suggested as a natural candidate for giving an exponentially large
(constructive) Ramsey bound is the following. Let p be a prime which is congruent to 1 modulo 4.
Form the graph G, with vertex set Z, (the integers modulo p) and edge set {{i, j} : 0 =i —jisa
quadratic residue modulo p}. Since p = 1 (mod 4), {i, j} is an edge iff {j, i} is. Recent results of
Shearer [Sh86] show that for small p, bounds obtained for r(k, k) by these techniques are not too
bad (see also Mathon [Ma87]). It is known that G, shares many properties with a random graph of
the same size (e.g., see [GS71], [BT81]). However, it can be shown that infinitely often G, will
contain a complete subgraph of size ¢ log p log log p.

2.3 Upper bounds

The earliest upper bounds on r(k, #), due to Erdds and Szekeres [ES35], follows from the
(immediate) recurrence
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.13) r, ) rk~1,8+rk,-1).
This leads at once to the upper bound
2.14) re 0 < (FFeT?

and, in the special case that k = £,
219 e k) € (%52 ~ o e

For fixed values of £, these bounds have been improved by Graver and Yackel [GY68] to

Pk 8 < c k*og log k
’ log k ’

although a widely quoted upper bound for large values of & and £, published by Yackel [Y72] now
appears to be flawed (cf. [LSW]). In this section we present several recent improved estimates on
r(k, ). The bound on r(k,3) (Theorems 2.9, 2.10) and its striking proof is due to
Shearer [Sh83], and is based on an earlier argument of Ajtai, Komlds and Szemerédi [AKSS80].
We point out that the ideas introduced in [AKS80] have also been applied very effectively by these
authors to several other problems as well (cf. [AKS81a)], [AKS81b]). The general bound on
r(k, £) in Theorem 2.11 is due to the second author and represents the first significant improvement
on (2.14) in the 50 years since it appeared. In particular, it implies that

[y er?)]

as k + ¢ —> =. Note that (2.13) does not imply r(k, k) -o[[zlﬂ], even assuming the

rk,) =o

(unrealistic) boundary conditions 7 (j, 3) = 1 for all j.
Theorem 2. 9 [Sh83]
Let G be a triangle-free graph on n vertices with average degree d. Let a = a(G) be the
independence number of G and define
S :=dlogd—-d+1/d-1D2,fO) =1,f(1)=1/2.
Then
2.16) aznfld).

Proof. First note that f is continuous for 0 € d < = and that 0 < f(d) < 1, f'(d) <0,
f"(d) > 0. Further, f satisfics

Q17 d+Dfd=1+W -3 ().

We will prove (2.16) by induction on n. For n < d/f(d), the theorem clearly holds since the
neighbors of any vertex of G must form an independent set, and consequently

azd2znd).
For the vertex v in G, let d; = d;(v) denote the degree of v. Also, let d, = d;(v) denote the
average degree of the neighbors of v. We claim that we can always find a vertex v so that
(2.18) (d1+l)f(d) <1 +(dd1+d"2d1d2)f'(d)

holds. To see this, note that the average value of d;d, is the same as the average value of 47, and
is at least d2. Thus, the average value of the RHS of (2.18) is at least as large as the average value
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of the RHS of (2.17). Since, the average value of the LHS of (2.18) is equal to the LHS of .17,
then (2.18) holds on the average and consequently, the desired vertex v must exist.

Now, let G* be formed from G by deleting v and all its neighbors. Of course, G* is also
triangle-free, and has nm —d;—1 vertices and %nd —did; edges. Let d'=

(nd — 2d,d)/(n — d| ~ 1) be the average degree in G*. By the induction hypothesis, G* contains
an independent set of size (n —d; — 1)f(d"). By adding v back to this set, we obtain an
independent set in G of size

l1+m—-d -Df@).

Since f"(d) 2 0 for 0 < d < « we have
S D2f@+@-df@.

Therefore,

1+ —-d=DfE) 21+ —d; - Dfd) + & —d;— D@ - dyf'd)

21+ (n - dl - l)f(d) + (dd1 +d -~ 2d1d2)f'(d)
2h—-di—1Df@d)+ W, + 1f(d) by (2.18)
=nf(d).

Thus, a > nf (d) as required, and the theorem is proved. ®

As an immediate consequence, we have:

Theorem 2.10

2.19) rk, 3) < k*/log (k/e) .

Proof: Let G be a triangle-free graph on n vertices and suppose a(G) < k. Since the neighbors of
any vertex v form an independent set then we must have degree (v) < k. Thus, the average degree
d in G is at most k. Therefore, by (2.16)

(2.20) k2alG) 2 nf(d) 2 nfk).

Hence, if n > k/f (k) then G must contain an independent set of size k + 1. This implies
@21 Rk +1,3) <1+k/f(k)
which in turn implies (2.19). ®

Theorem 2.9 is a slight extension of an earlier result of Ajtai, Komlés and Szemerédi [AKS80]
who proved

a(G) 2 n/(100d log d)
for any triangle-frec graph G with n vertices and average degree d. If 3 is replaced by an arbitrary

but fixed value ¢, then the best bound on r(k, #) is given by the following result of Ajtai, Komlds
and Szemerédi:

Theorem 2.11 [AXS80]
(2.22) rlk, &) < (5000)%k*/(log k)*~2

for k sufficiently large (depending on £).
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It will be convenient for the next result to define the related quantity »*(k, £), the largest value
of n such that there is a red-blue coloring of the edges of K, having no red K; and no blue K,.
Thus,

rk,)=rk+1,+1)~1.

For arbitrary k and ¢ (not satisfying k >> £ required by Theorem 2.11), the best current upper
bound is given by a recent result of the second author:

Theorem 2.12 [R]

2.23) Pk, 0 <o (K3 4]/ togtk + )

for suitable positive constants ¢;. The proof of Theorem 2.12 is based on the following resuit, which
is of independent interest.

Theorem 2.13
If £ = log k then

(2.24) ik, &) < [" I ]/ & + &)°

for a suitable constant ¢ > 0.

Because of space limitations, we will not give the proof of (2.23). Rather, we will illustrate the
method used in proving it by proving the following weaker result.

Theorem 2.14

(2.25) rk,0 <6 [k ;e]/log log(k + &)
for k + £ sufficiently large.

Proof. The proof of (2.25) will require the use of several auxiliary lemmas. We first establish
these.

Lemma 2.15 [Go59] Let G be a graph with n vertices and 8 [g] edges, and let T(X) denote the
number of triangles in a graph X. Then

(2.26 T@+T@ > @+ -p) (1) -pa-p1).
Proof: Letd,, d,, ..., d, be the degrees of the vertices of G. Then
7@ +T@ = 3] - £ 30 ~d -4,

1
e S (n = Dd, = D)
2 % i~ 1D =2) =38nn — D?+ 3820 — DI

-@+a-p 5] -pa-p ;). =
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Lemma 2.16 Suppose m and n satisfy m > e’n > 0.

Then

.27 r'im,n) €5 ['" :' n] /log(m/ezn) .

Proof. By applying (2.13) repeatedly, we obtain

(2.28) rm+1Ln+D <3 [”' M 3]r(j +1,3)
j=0

Let s:=m + n and t: = |(s/n)'2] — 1. We break the sum on the RHS of (2.28) into two parts.

si= 2 [Ri7%)rura< (323 3 (37

< i<
(2.29) < [;] [%Jz (f33).
Also, by (2.19)
szz-j_jz+l 71336+ s}_%l (77336 +02/ 108 i
<o 3137037

- e | 5) () -0+ 72)2))

- 4 1-nQs—n-1 [s]
log{s /e*n) s(s—1) n

< log(s4/e2n) ’ [;] ’

Thus, using the fact that
3

[t 3'3] < 1llog (s/e*n) ,

2

rm,n <rim+1,n+1)<8,+5,<5 [m : n] /log(m/ezn)

we obtain

form > e’n. ®

Lemma 2.17 Suppose for some positive m and n,
2.30) r'im,n) 2 16(m + n)?.

Lets:=m +nande: = 81—s min{m, n). Then at least one of the following holds:

121
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@ rem—1Ln 22 |1+ £r0m, n);
s s
Gi) =12 21+ £ (rm, n);
s s
(iii) rm-2,n) > —’Z%% 1+§ 1+ sil ]ro(m,n);
(iv) r'im,n -2 > 2= 1) L+ 5| 14 —=—|rom, n).
sts =1 s s—1

Proof: Set N: = r*(m, n) and let Ky be 2-colored so that no red K,+; and no blue K,; is formed.
Let d;’ denote the number of red edges incident to the ith vertex of Ky, with 4 denoting the

analogous quantity for the blue edges. If 4, > % 1+ -:- N for some i, then by considering the

“red” neighbors of this vertex we get (i). Similarly, if 4 > % 1+ f N then (ii) must hold.
Hence, we can assume that
(231 P < 2+ SN, a® < 2h+ &N

s s s s

for1 £ i < N. Since
4P +d® =N -1

then

d,.">>1v—1—§ N

1+ <
5

2.32) -Nll—i—-‘—'iJ—l
s 5

On the other hand, if B8 is defined by
% 2 di(')-ﬁ[lzv] s
then Lemma 2.15 implies that there are cither at least
wep[§)- Lu-nl)
red triangles, or at least

B=a-3]-Lsa-p 3]

blue triangles in K. Consider the first possibility. Then some edge, say ey, is contained in at least
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(2.33) 3A

N

o[2)

red triangles. Thus,(iii) would follow (by considering the set of vertices
of these red triangles, excluding the endpoints of eo) if we could show

= 82N - 2(1-8) e -2

(2.34) szN—zzH[1+§][l+'sf1}N

This we now indicate how to do. First, observe that by (2.32)
(r) _ N] 2fm _ el
):'. di 28 2 >N s ;2] N

so that

(2.35) g >

Thus it will be enough to show that

230 B_g . @-S-n/ D
m(m—l){ 1+§_]{1+§_]2N + 2
s(s-1) s s-1

for N» 16s2

We will not carry out all the details of this computation, which are
relatively straight forward (but unenlightening).The basic point is
that the important term of (2.36) is

s s s~1

(2.37) [E_sn}z _m(m—l){ 1+E] [1+ € }

82 s(s-1) s j s-1

which can be rewritten as

(2.38) [mz Cm(m-1) e [2mn+ (1, L m(m—l)J
2 7 s(s-1) &3 s s-1" s(3-1)

+ ez[ n? - m(m-1) jJN
s s2(s-1)2

In turn the main contribution to (2.38) turns out to be

(2.39) n? _m(m-1) _ _mn
s2 ~ s(s-1) s2(s-1)

by the definition of s.

The value assigned to € now guarantees (2.36), and therefore (2.34), holds.
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2. If max{m/n, n/m} > x then halt; otherwise go to 3.
3. If r*(m, n) < 16(m + n)? then halt; otherwise go to 4.

4. Select a pair (m", n") for which one of the possibilities of Lemma 2.17 occurs. (Thus,
m'+n"=m+n—1or m+n-—2) Let G° be a graph with r*(m*, n*) vertices. Set
m=m'n=n",G=G"and go to 2.

Suppose now that the algorithm halts at some graph G' of size r* (k', £). Let ¢t = k' + £' and
p =1t —t'" Notethatif y: = 19]80%"%_‘ then at each pass through step 4 of the algorithm, the value
min(m, n)

of ¢ 8om + 1) satisfies
1
> L >
.41 €z 8(m + n) z 81 + m/n)
> 1 _
23 +0

Hence, by the time we have reached G', we have (by Lemma 2.17) accumulated the “gain factors”
to obtain the estimate

'+ D& +2) - - K + 1D +2)...0serLl)
G+DE+D @
t,
&)

242) = ﬁ
[;{] P

We now consider several cases, depending on how soon the algorithm halts, and why.

1+ 2%

I"(k’, l’)- t'+1

r'k, &)

1+ %
t

rk, o .

1+ %
t

"+

Casel. t'>t +2.
Subcase (a). r'k', &) < 16¢'2

Since ¢ is large then so is #'. Thus, by (2.7) we must have min(k’, £") = 2, say (by symmetry)
' = 2. Thus,

r, ) =rk',2) € &'+ Dloglk’ + 1)/e)
2.43) < (k' + 1) og(Vi fe)
= 2(k' + 1)%/log(t/e? .
Therefore, by (2.42)
t
H
[k’ + 2]
2
&)
k) 2+ D2
[k';— 2] log(t/e?)

r'k, &) < rrk', 2)

(2.44) <

5 [k Z e]/log(k + 0

fort = k + £ large.
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The case that there are B blue trinagles follows in exactly the same
way (using the symmetry of B and 1 - B in the expressions involved)
to yield (iv). This completes the proof of Lemma 2.17.

We need one final observation before proceeding to the proof of (2.25).

Fact.
s s + 1
(2.40) r 1/1i > log
N r+1
i=r+1
Proof: The sequence
n
a_ =1 1/1i - log(n + 1)
n .
i=1i

is monotone increasing. Consequently

s s r
I 1/i=:1/i-:% 1/
i=r+1 i= i=

=log(s + 1) + a - log(r + 1) - a_

s + 1

>log r+1

Proof of Theorem 2.14. Let G be a graph with r*(k,l) vertices.
We will consider the following algorithm.

l. Setm=%k, n=4, t =k+ £ and

log t -1
log log t '

oo}
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Subcase (b). k'[¢' 2 x = 1 _logr _
3 log log ¢

Thus, by Lemma 2.16,
rLE) <SS [" + & ] / log(k /e

so that
. 5[k+£] [k’-l-,e']
'k, 8 < [k’ 2 z'] ' log(kk'/e2e')
(2.45) <5{k;e]/log[:—zglggi—é—;—l <6["+’]/1oglog(k+z)

for k + ¢ sufficiently large.
Case2. 1' <t +2

Thus,

p —/i-3
ah+=2=> 11 1+-—L,]
ol '+ e t—i
1—i-3
>y ¥ ——+1
i=0 =1
+
> y log tﬁl by (240)
>-1— lo; t-Llo log ¢
2)’ ¢4 2 g log I .
Hence,
k+¢
246 k0 < [k'+e'] - 1 ‘r'(k’,e’)<2[k+8]/loglog(k +8
[k' ] 7loglogt

for k + ¢ large.
Thus in all cases (2.25) holds and the theorem is proved. B
2.4 Many colors

Up this point, we have investigated the problem of estimating the size of the largest
monochromatic clique formed whenever the edges of K, are 2-colored. In this section we will
discuss the case in which ¢ colors are permitted.
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Define r(ky, ky, . .. k) to be the least integer n with the property that for every t-coloring of
the edges of K,,, there exists an i, 1 € i < ¢, and a complete subgraph Ky, of K, having all edges
colored by the ith color. As before, Ramsey’s Theorem guarantees the existence of r (ky, . . . , k).

The same argument as that used for r(k, £) by Erdés and Szekeres gives a general (recursive)
upper bound:
Proposition 2.18
r(kl, kz, e ,k,) < l‘(kl - 1, kz, . ,k‘) +7’(k1, k2 - l, e ,kg) +oee

wtrky ks -1 =- 0 -2

Proof: Set n equal to the RHS of (2.47) and let the edges of K, be -colored. Let C; denote the
set of all vertices joined to a given vertex v by an edge having the ith color. Then

1
2 Icil =-n-1
i=l
and therefore there exists j, 1 € j < 7, with
ICJ‘ P2 l'(kl,. . .,k] - 1,...,k;) .

Suppose now that for no #, 1 < i < ¢, does there exist a subset of C; of size k; which spans edges
having only the ith color. Then by the definition of r(ky, ... ,k; — 1,... k), C; must contain a
Ky, with all its edges colored by the jth color. Adding the vertex v to this Ky -1, we obtain the
desired copy of K, having all edges with the jth color. B

It follows now by induction on ky, . . . ,k, and ¢ that, for example,
ky 4+ +k —o)!

(2.48) ren k) S G o Dr

For t > 2, (2.48) can easily be improved by a factor which tends to 0 as ¢ —> co. For a
discussion of general lower bounds for ri(ky, ..., k,), the reader is referred to [A72]. For the
remainder of the section, we will restrict ourselves to the interesting special case that

t

ky=...=k =3 Denote r(3,3,...,3) byr(3;1).
Theorem 2.19

For a suitable constant ¢ > 0,
cBIS)YP <r(3;1) S tMe —124) 2 > 4,

The lower bound is due to Frederickson [Fr79] (cf. [CG83]). For a statement of the upper bound,
the reader is referred to the survey paper of Chung and Grinstead [CG83]. Here we will prove only
the slightly weaker:

Theorem 2.20

3 +3

2

(2.49) €rGt) € |tte],t 2 4.

Proof: To prove the upper bound, we first show
(2.50) r3 ) <tGEGr—1D—-1)+2

Fix a vertex v of an r-colored complete graph K, with n = t((3; ¢t — 1) — 1) + 2 vertices. Let G,
denote the set of all vertices x with the property that {x, v} is colored by the ith color. By the
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pigeon-hole principle, there exists j with
(2.51) IglzrGe-1,

We can assume that no pair in C; is colored by the jth color (since otherwise x together with such
a pair forms a triangle in the jth color). However, it follows from (2.51) and the definition of
r(3;t — 1) that C; contains a monochromatic triangle. Iterating (2.50) now yields the upper bound
on (2.49),

To prove the lower bound, let us call a set 4 of integers sum-free if a, b € A implies
a +b ¢ 4. Lets, denote the largest integer such that the set {1, 2, ... s} can be partitioned into
! sets Ay, ..., A, each of which is sum-free. (A theorem of Schur [Sc16] guarantees that s, is
finite; see Theorem 5.1.)

Claim. For any t > 0,

(2.52) Sie1 2 385, + 1.
Proof: Let

fa....5l=quU --- U4
be a partition of {1, 2, .. .,s,} into 7 sum-free sets. Then the sets

Bi=3a:a€A4}UBa—-1:a€4},1<i<¢

Bu=36+10<¢<s},
are sum-free and moreover, form a partition of {1,2,...,3s, + 1}. ®
Since s, = 1, it follows by iterating (2.52) that
@.53) 522G -0
Now, set m =5, + 1 and let C;U - - - UC, be the t-coloring of the edges of K, with vertex set
{1,2,....m] defined by
{u,veCiff lu—~v|ea.

Suppose this graph contains a monochromatic triangle {u, v, w), with ¥ < v < w. This implies
vV—u,w—v,w—u € A4 for some k, contradicting the fact that 4, is sum-free. Thus,

m=s5, +1<r3;t)-1

3 -1 3 +3
. > -
r(30 > 7 12 )

as required. ®
The outstanding open problem concerning r(3; t) is to decide whether or not lim r3; 0 s

{—oo
finite. (The limit is known to exist [Ch73]) Erdés currently is offering $100 for the answer (with a
proofl)

3. Ramsey numbers for other graphs

During the past 10 years, an impressive number of papers have appeared which investigate
analogues of Ramsey’s Theorem for other graphs besides complete graphs. An initial motivation for
these studies was the hope that progress here might lead to a deeper understanding of the classical
(complete graph) problems. While this hope has not yet materialized (for example, the Ramsey
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numbers are known for all graphs on 5 vertices except Ks), the subject has developed into a lively
and interesting area in its own right. In this section we will describe several of the results (including
some very recent ones) which we find particularly attractive.

We begin with a definition. For graphs G and H, we let 7(G, H) denote the least integer n so
that in any coloring of the edges of K, by red and blue (say), there must always be formed either a
red copy of G or a blue copy of H. In particular, if G = Ky and H = K, then r (Ki,K,) = r(k, &)
from the preceding section. When G = H, we abbreviate r (G, G) by r(G).

One of the simplest and most general results in this topic is the following theorem of Chv4tal
and Harary [CH72].

Theorem 3.1
G.D r(G, H) 2 G(G) - D) =) +1

where x(G) denotes the chromatic number of G and ¢(H) denotes the size of the largest connected
component of H.

Proof: Let m = (x(G) — 1)(c(H) — 1) and think of K,, as being x(G) — 1 copies of K, (_, with
edges interconnecting all pairs of vertices in different copies of K. g)—1. Color all edges within each
copy of K,¢p)-; blue, and all remaining edges red. Certainly, there is no red copy of G since this
would imply that the chromatic number of G is at most x(G) — 1. On the other hand, there can be
no blue copy of H since the largest blue component of K, has size ¢(H) — 1. Therefore,
r(G,H) >m. =

Corollary 3.2 [C77] For any tree T,, with m vertices,
3.2) P, Kp) = m — D — 1) +1.

Proof. The lower bound follows from (3.1). For m =2 or n = 2, (3.2) is immediate. Assume that
(3.2) holds for all values of m' and n’ with m’ +n' < m +n. Let s = (m -1 ~1)+1 and
consider a 2-colored K;. Let T' be a tree formed from T by the removal of some endpoint x (where
x is connected to, say y, in T,,). By the induction hypothesis, the K, contains either a blue K, and
we are done, or a red T'. Hence, we may assume the latter holds. Now, remove the m — 1 vertices
of this red 7', leaving a 2-colored Ks—(m-1) = K(m-1)(n—2)+1. Again, by the induction hypothesis,
this graph contains either a red T, or a blue K,_;; we may assume the latter. Thus, in the original
K, we have a red T' and a blue 7,_; disjoint from it. Finally, we examine the edges emanating
from y to the blue K,,_;. If any of these edges is red, then we have found a red Tp. If none of the
edges is red, then K,y U (y} forms a blue K,_;. ®

Just as in the case of rik, &), it is possible to consider using more than two colors. We let
r(G;t) denote the least integer n such that if the edges of K, are arbitrarily f-colored, then a
monochromatic copy of G must always be formed. One of the sharper bounds for a number of this
type is given by the following result of Chung [Ch74] and Irving [174] (see also [CG75]). Let C,
denote the cycle on four vertices.

Theorem 3.3 [174].

For all ¢,
3.3) rCat) Kt +r+1
If t — 1 is a prime power, then

3.4 rCat) 2P -1 +2.
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Note the dramatic difference between the size of #(Cy; ¢) and that of 7 (C3; t) = r(3; ¢) given in
(2.49) (which grows exponentially in ¢), giving one more example of the difference between the
behavior of odd and even cycles in graphs.

Returning again to the case of two colors, one might ask how slowly r(G) can grow, as a
function of the number of vertices v (G) of G. This is answered by the following result of Burr and
Erdos.

Theorem 3.4 [BE76)

If G is a connected graph with n vertices then
(3.8 r(G) 2 [(4n — 1)/f3] .
Furthermore, for each n > 3, there exist graphs for which equality in (3.8) is achieved.

If G is allowed to be disconnected (but, as always, having no isolated vertices) then r (G) can be
much smaller.

Theorem 3.5 [BE76]

There exist positive constants ¢, ¢’ such that

(3.9) n+ i—zg% —cloglogn € min{r(G):v(G) =n} < n+c'Vn .

It is conjectured that the lower bound in (3.9) is closer to the correct answer.

If G is restricted in various ways, then the Ramsey number can also be restricted. A beautiful
example of this behavior is given by a recent result of Chvidtal et al. (which was conjectured by Burr
and Erdds [BE761).

Theorem 3.6 [CRST83]

For each positive integer d there exists a constant ¢ (d) such that for any graph G with n vertices
and maximum degree d,

(3.10) r(G) € cldn .

Space limitations prevent us from giving the proof, which uses the powerful regularity lemma of
Szemerédi (cf. [Sz76] and Lemma 6.8).

A related result of Beck [Bec83b] asserts the following, where we now assume that not only is
the maximum degree of G bounded by d, but also the chromatic number of G is bounded by x.

Theorem 3.7
If G has n vertices then
r@G) < @ma¥
Burr and Erdds have conjectured a stronger form of Theorem 3.6, which is still unresoived.

Conjecture 3.8. For each d there exists a constant ¢'(d) so that if G is any graph with n vertices
and, for any subgraph G’ of G, the average degree of a vertex in G' is at most d, then

r(G) € ¢'(d)n .
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An interesting variation of #(G) has been studied by a number of authors recently. This is the
size Ramsey number, denoted by r, (G), and defined to be the least integer m for which there exists
a graph H with m edges, so that in any 2-coloring of the edges of H, a monochromatic copy of G
must always be formed.

A beautiful and unexpected result of Beck (settling a $100 problem of BErdds) shows that 7, can
be quite small.
Theorem 3.9 [Bec83al

If n is sufficiently large then for P,, the path on n vertices,
r.(P,) <9007 .

Beck actually proves a stronger density theorem which implies Theorem 3.9 at once.
Theorem 3.10 [Bec83al
If n is sufficiently large, there exists a graph G with fewer than 900 n edges so that any subgraph
H of G containing at least half the edges of G must contain a copy of P,.

Beck also considered the corresponding problem for trees T with maximum degree d. For this
case, he proves:

Theorem 3.11 [Bec83al

If a tree T, has n vertices and maximum degree d then for n sufficiently large,
3.1 7. (T,) < dn(logn)*?.

We will not give the proofs of Beck’s results here (which employ, among other things, the use of the
probabilistic method and the Lovdsz local lemma). The reader is referred to the original papers for
the details.

A question left open by Beck was whether the logarithmic term in (3.11) could be replaced by a
constant. This was very recently resolved in the affirmative by a striking result of Friedman and
Pippenger.

Theorem 3.12 [FP]

Let 0 <4 < 1 and let d be fixed. For every n there is a graph G with ¢ = O(n) edges such that,
even after the deletion of all but ée edges, G continues to contain every tree with »n vertices and
maximum degree at most d.

The ingenious proof of Theorem 3.12 given in [FP] is definitely non-trivial, and uses earlier
results of Beck, Alon and Chung [AC], Lubotzky, Phillips and Sarnak [LPS] and a powerful result
of their own implying the universality of expanding graphs with respect to small trees. More
precisely, this last result is:

Theorem 3.13 [FP]
If H is a nonempty graph so that every subset of size x < 2n — 2 vertices has at least (d + 1)x
neighbors then H contains every tree with n vertices and maximum degree at most d.

The restriction here on the maximum degree is necessary, as Beck [Bec83al observes, by showing
that there are trees T, with n vertices for which 7, (T,,) > n%/8. By contrast, any tree T, with
vertices satisfies 7 (T,) < 4n + 1 (see [EG73)).
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For general graphs G with n vertices and maximum degree d, it has been shown by Rédl and
Szemerédi [RS] that

7. (G) =o(n?) .
On the other hand, there exist graphs G with maximum degree 3 having
7. (G) > n(logn)®
for an absolute constant ¢ > 0.

We conclude this section with several rather nice open problems in this area.

Conjecture 3.14. (Erdds) For some ¢ > 0,
r(Cy, K,) = 0(n?™9) .

Conjecture 3.15. (Erdds) If G has [g] edges then
rG) € rk,) .

More generally, if G has [;] + ¢t edges, 0 € ¢ < n, then
r(G) € r (K, ()
where K, (1) denotes the graph formed by connecting a new vertex to ¢ of the vertices of a K.

Conjecture 3.16. (Erdos-Graham [EG73])
r(Cs;t)/r(Cst1) — 0
ast —> oo,

Define the induced Ramsey number r* (G) of a graph G to be the least integer m for which
there exists a graph H with m vertices so that in any 2-colormg of the edges of H, there is always
an induced monochromatic copy of G in H. The existence of 7* (G) was shown independently by
Deuber [D75], Erdés, Hajnal and Pésa [EHP75), and Radl [R73).

Problem 3.17. If G has n vertices, is it true that

r (@) < c"

for some absolute constant ¢?

This can be shown to hold when G is bipartite (using techniques from [R73)). It is also known
that for general graphs G,

" (G) < 2 +o(1) ‘

Problem 3.18. Is it true that
r'(P,) <cn?

Problem 3.19. (Trotter) Is 1t true that for each d there is a ¢ (d) such that if G, has n vertices
and maximum degree d then r* (G,) < n*@?

Problem 3.20. (Erdds) Is it true that if G has e edges then
(.12 r) < 2"

for some absolute constant ¢? If true, then (3.12) would be, apart from the value of the constant,
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best possible.

4. Hypergraphs

In this section we consider extensions of the preceding questions to the general setting of
hypergraphs. More precisely, set [n] = {1,2, ..., n} and

[nlp ={4: 4 c[n], |4]| =p}.

We will consider colorings of [#}? where p is an arbitrary integer. This extends the case p=2
considered earlier.

Definition. The symbol n —> (£,,8,,...,¢,)" will denote the validity of the following
statement: For every t-coloring of [#}? there exists i, 1 <i < ¢, and a set T, |T| = ¢; so that
[TV is colored only by color i.

If £, =£y=...= ¢, =¢, then this will be abbreviated by writing n —> (¢)#. The general
Ramsey numbers are defined as follows:

rp(1, 82, ... ,8) = minlng: n —> (1,85, ...,£,)P forn > ng} ,
rp(2,t) = minfng n —> ()¢ for n 2 ng}
rp,(&) =r,(2,2) .

Recall that in Section 1 we gave a proof that
(4.1) V2+0 (1)) € ry(0) € (4+0(1))¢

so that the growth of the function r,(#) is exponential in . For p 2 3, much less is known about
the order of magnitude of the function r,(¢). An upper bound follows from the proof of Ramsey's
theorem.

Theorem 4.1 [ER52]
4.2) Log,~1(r, (&) < ¢p¢

where Log,_; denotes the (p — 1)-fold iterated logarithm.

Proof: The proof proceeds by induction on p. For p = 2, (4.2) follows from (4.1), while for
p =1, (4.2) is just the pigeon-hole principle. Suppose (4.2) holds for p — 1, so that r,_,(#) exists
and satisfies (4.2). Set

u -rp_l(f - 1) + 1
and define the numbers x,_;, ..., x,2 by

Xy—1=landforp-2<i<u-1,

[i+1]
X =X;+12P_1 +1.
Letn = x,_, + (p — 2). We prove
4.3) r,(&) <n.
Suppose now that [n} is 2-colored, say by the coloring x. Select distinct points vy,vs, . . ., Vp-2

in {n] and define
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Vo =Inl = {vy,vy, ..., v ).

In general, now, suppose vy,vs, . . ., v; and ¥; have been defined. We proceed as follows:
(o)  Select v;4; € ¥; arbitrarily;
() Partition ¥; — {v;4,} into equivalence classes by defining
v=Ev'if

for every choice of v;,vp, ..., Vips € {Vi,....Vis) the sets WipVip - - - vjp_l,v} and

v ¥jp - -+ vj, '} have the same color;
(y) Define ¥;4, to be the set of those v belonging to the largest equivalence class in (8).
Thus,

_ Lx;«l»l ]
Wil 2 (7] = D27 -1 > Xit] .

We continue until vy,v,,...,v, are constructed. This is possible since V; is nonempty for
i=p—-2,...,u—-1@nd|y] > x; 2 1). The sequence vy,v,,..., v, therefore has the
following property: The color of {v,l, Vigs o s Vipy v,), i1 <i;<... <li,, is not changed if Vi, is
replaced by any v; where j > i,_;. In other words, the color of any (ordered) p-set depends only
its first p —1 elements. Let x' be the 2-coloring of the (p — 1)-element subsets of
{vi,va, . . ., v,_;} defined by

x WipVip -« -, Vipd = xWipvipy v vl
By the choice of u = r,_;(£ — 1) + 1 we obtain a x"-monochromatic £-set Wipvig - - - s Viep Vul
(which, of course, is also x-monochromatic). This proves (4.3). Since
U=r, (-1 +1<r,0)
then by induction
Log,—»(x) < Log,_2(r,—1(&)) < ¢,—12 .

On the other hand,
n < "f[l (2[;:1‘] +1) < 22[;].

imp=2

Therefore,

< cpf

Log,—1(,(8)) < Log,_; (2 H

as required. ®

We next discuss lower bounds on 7, (£).

Theorem 4.2

@.4) @ > £ 2G40
Proof. The proof of this result is quite similar to that of Theorem 2.1, so we will only give a
sketch. Consider a random 2-coloring of the set [n]3. The probability that a particular £-set is

R S .
monochromatic is 2° 3’. Thus, if
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n) 1= (5
5)27% <1
then n < r3(£). A simple computation now yields (4.4). ®

Although the next theorem is a major tool in establishing lower bounds for r, (&), p > 4, we will
not give a proof. Instead, we will present a similar, but much less technical proof, of a related result
(Theorem 4.5).

Theorem 4.3 [EHR65] (Stepping-Up Lemma)
if n-}:-> (©)8 for p > 3 then
24> (28 +p — M

(where m—> (k) indicates that m —> (k) does not hold). This together with Theorem 4.2
implies
Theorem 4.4
Forp 2 3,
“.5) Log,2(r, (&) 2 ¢, €.

The asymptotic behavior of r,(£) is not known for p > 3. However, because of the Stepping-
Up Lemma, any improvement on the lower bound of r3(#) would yield a corresponding
improvement on the lower bounds for 7,(£), p > 3. The major open problem here (and indeed, one

of the main unsolved problems in Ramsey theory) is the determination of the order of growth of
r3(8). P. Erdés is currently offering $500 for an answer to the following problem.

Problem 4.5. Is there an absolute constant ¢ > 0 such that
4.6) loglogry(&) > c€?

It is interesting to note that if four colors are allowed (rather than two), then the analogue to (4.6)
is valid, i.e.,

“n loglogry(£,4) = c£ .
This is a consequence of the next result.

Theorem 4.5 (Hajnal; cf. [EHMRS84], Th. 26.3)

If n=+> (£)3 then 2"4> (£ + 1),

Proof: Let [n]?=C; U C; be a 2-coloring with no monochromatic £-set, and let < be the
lexicographic order on JAn), the power set of [n], given by:

a; < a3 iff max{a; — (a; Nay) < max(a; — (a;Nay)) .
For a; # a, € #n), we also define
o(a;,ay) = maxli: i € (ay—ay) U (@ —ap}.
For ay,as,a; € Hn) with a; < a; < ay, let
o, = 8(ay,az), 8, = 8(as,ay) .

Finally, set
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lay,az,a5) € S, iff {6,,8) € Cyand 8, < 5,,
{ay,asa;3) € S, iff {6,,8,) € C;and §; > 55,
{ay,az,a3} € S5 iff {5,,8)) € Cpand 5, < 55,
{ay,aza5) € S, iff {6,,8)) € Crand §; > 5,.

Suppose now that there is a family X € #An), |X| = ¢ + 1, which is monochromatic. Assume that
[XP < S, (the other three cases are similar). Write

X ={ajay,... .00}, 0, <a,<...<ap
and let §;: = 8(a;,8;41), 1 i € & Fori € €—1, {a;,a;51,a445) € S, so0 that
8y =8(a;,a141) < 8apay,0540) = 6,4y .
Thus,
81 <d,<...<8,.

However, for arbitrary 1 < i < j < ¢, {ai,a;+1,aj+1} € S and consequently,
{5(a,~,a,-+1),5(ai+1,aj+1)} - {6i,5j} €C,

(where 8(ay+1,8;41) = 8(a;,a;4)) = 3; follows from the monotonicity of the a;’s). This implies that

{6155, . . . ,8,} is monochromatic, contradicting our hypothesis on the coloring of [n]2. ®

Applying Theorem 4.5 with the estimate of Theorem 2.1, we obtain:
Corollary 4.6. For ¢ sufficiently large,

loglogrs(£,4) > %e log 2.

We conclude this section with several remarks. Theorem 4.1 is a quantitative form of Ramsey’s
theorem. The upper bounds on r,(#) are due to ErdSs and Rado [ER52]. The lower bounds on
rp () are due to Erdds and Hajnal [EH72] (cf. [GRS80]).

In summary, the order of growth of the function r3(¢) is not known. However, if we allow
t 2 4 colors, then we do know that r3(£;¢) is doubly exponential in 2. If just three colors are
allowed, there is a modest improvement of (4.4) due to Erdds and Hajnal [EH]:

4.8) r3(€;3) > explcéilog?e) .

Finally, we state one more related problem which was considered in [EH72].

For fixed n,4,u,v and p, the notation

4.9 n—> [e, [“} Jp

v

will denote the truth of the following statement: For any red-blue coloring of [#)?, either there is
an ¢-set X C [n] with all elements of [XJ? red, or there is a u-set ¥ C [n] with at least v
elements of [Y}? blue. Let Sfp(n, u,v) denote the largest value of £ for which (4.9) holds. The

conjecture of ErdSs and Hajnal concerns the behavior of f »(n, u, v) as v increases from 1 to ;]
It asserts that there exist



Graham & R&dl: Numbers in Ramsey theory 137

1<y <v<...<y, < [;], where v, = v; ()

(but is independent of n) such that the function JSo(n, u,v) grows like a power of n for
v €[L,v;— 1], like a power of logn for v € [v, v,—1], like a power of log log n for
v € vy, v3 — 1], etc., and finally, like a power of Log,_sn for v € [v,_,, ; 1

8. The Theorems of Schur and Rado-Folkman-Sanders

Set m = [t!e]| and suppose that [1, m]=C; U C, U ... U G, is a t-coloring of the integers
in the interval [1, m]. Consider the induced -coloring of the edges of the complete graph K4,
with vertex set {1,2,...,m + 1} where the edge {u,v} is colored by the ith color iff
lu —v| € C;,. By Theorem 2.20, we must find a monochromatic triangle {u, v, w} with
u <v <w. However, this means that the integers x =v —u, y=w-—v and
z=w —u =x +y all belong to the same C; for some ;.

This argument yields the quantitative form of a theorem which was proved some 70 years ago by
I. Schur:

Theorem 5.1 [Scl16]

Suppose
m2r0—-12 [tle]

and the set of integers f{1,2,...,m} is t-colored. Then there exist integers
x,y,z €{1,2,..., m) having the same color such that x +ymz,

Recall (cf. the proof of Theorem 2.20) that the minimum # for which Theorem 5.1 holds was
denoted by s, + 1. By Theorem 2.19, 5, > ¢(315)!/5 for a suitable positive ¢. By replacing
G155 =3.16. .. by a slightly larger value, it is possible to guarantee that x and y are distinct.
We shall now deal with this problem in a somewhat more general form:

Let X = {x), x5, ..., x:} be a set of integers. Denote by =X the set

Zx:o=1cll,2,... k)
i€r

of all 2 — | sums of nonempty subsets of the x;. Of course, these sums do not all have to be
distinct but, in general, |ZX| < 2% — 1 for any k-element set X.

Our main concern here will be to discuss the following two theorems:
Theorem 5.2 (Non-Repeated Sums Theorem).

For any choice of positive integers k and ¢ there is a least integer S (k, t) so that if n > S(k, 2)
and {1, 2, ..., n} is t-colored, say {1,2,...,n} = C, U ... U C, then there exists a set X with
|X| = k so that [2X| = 2¥ — 1 and X € C; for some i.

Theorem 5.3 (Disjoint Unions Theorem).

For any choice of positive integers k and ¢ there is a least integer U (k, t) so thatif n > U (k, 1)
and {1,2,..., n} is t-colored, say {1,2,...,n}=C, U... U C,, then there exists a collection
of k pairwise disjoint nonempty sets Z1, Z,, ..., Z; S {1, 2,..., n} so that all nonempty unions
of the form \J Z;, @ =1 C {1,2,..., k), are in a single C; for some j.
i€l

The non-repeated sums theorem was proved by Rado [Ra33], Folkman (unpublished;
cf. [GR71bD) and Sanders [Sa68]; the disjoint unions theorem was derived by Graham and
Rothschild [GR71a] as a consequence of a general Ramsey theorem for n-parameter sets.

The following proposition is part of the folklore.
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Proposition 5.4

6.0 g Sk, ) < Uk, ) < (SEDTT].

Proof: First we prove the upper bound. Partition a set X of cardinality [S &, 0 + 1] into blocks

X;, 1 < j < Sk, 1), satisfying |X;| = j. Suppose that all the subsets of X are t-colored (and
therefore 50 are the sets X;). Assign to each integer j < S(k, 1) the color that X; has, and apply
Theorem 5.2. This 1mmed1atcly yields the required sets Z, Z,, . .., Zg.

Now we prove the lower bound. Suppose that {1, 2,..., 29,0} is r-colored. This induces a
t-coloring of the nonempty subsets of {1,2,...,U(k,1)} by assigning to the set

J c{1,2,..., Ulk, 1)} the same color as that assigned to the integer 3 2/. By Theorem 5.3 we
j€J

must have k pairwise disjoint sets Z;, Z5, ..., Z; with all unions monochromatic. Set

xi= 32, 1<i<k,and X = {x1, X2 ..., %). Clearly the set ZX is monochromatic and

7¢€Z;
|ZX| = 2¥ — 1, which implies S (k, 1) € 29% 7, as required. ®

A. Taylor [T81] has given upper bounds for S(k, #) and U (k, z) which are of the form of a
many times iterated exponential. More precisely, for integers p and ¢, define:

Tp = p,
T,{g+1) =p7P
Thus, T,(g) is a tower of p’s of height g.

Theorem 5.5
(5.2) Sk,2) £ T:(4k - 1), U(Kk,2) € T3¢k -2).

In [T81], Taylor also gives similar upper bounds for the general values S(k, ¢) and U(k,?) in -
which both the terms and the heights of the towers now depend on k and 7.

Because of the lower bound in Proposition 5.4, the first inequality of (5.2) is a consequence of
the second one. We will give a proof of the second inequality here which is based in part on ideas
from [R82] and [Fu85], and is slightly different from the proof of Taylor.

The following result is a special case of a more general theorem of Erdés [E65].

Lemma 5.6. Let A, A,, ..., A, be sets with cardinalities ay, a,, . .., a,, respectively, which
satisfy:

a=1t+1

and

i-1

i=1

+1, j=2,...,r

Suppose that the set 4; X A, X ... X A, is t-colored. Then there exist sets B; & A; with |B;| = 2
for 1 € i < r, such that the set B; X B, X ... X B, is monochromatic.

Proof: We will proceed by induction on r. For r = 1, the statement is immediate. Suppose the
statement has been proved for ¢ = j — 1 and assume that 4; X 4, X ... X 4; has been t-colored.

By induction, for each a € A; there exist sets B;(a) & 4;, [B;(a)} = 2, such that ]_'I B;(a) x {a}
i=1
is monochromatic. Since
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+1

i1 g,
aj-tH ‘;‘

i=1

must exist distinct a, a’ € 4; having B;{a) = B;(a'): = B;, and moreover, so that the set
j=1 j-l J=1
I8 x{a) UTLIB x{a'}=([IB) x la,a'}
i=1 i i=l

is monochromatic. ®

Remark: Note that for t = 2, (5.3) gives

a=3, a,=7 and for j >3,

Thus,
(5.4 Sa <3+
1

Definition. Let &= (X1, X, ..., X,} be a collection of pairwise disjoint sets. By U (&) we mean
the set of all unions of the X;, ie.,

U@®:={y x: 1c{,2,...,n}}.
i€l
Lemma 5.7. Let r and 1 be fixed integers and let a;, g, . . . , a, be defined by (5.3). Further, let
& be a collection of m: = > a; disjoint sets X;, Xy, . .., Xy, and suppose that the set U (&) is
=

t-colored. Then there exist pairwise disjoint nonempty sets Yo, Y7, . . ., Y, € U(®) so that the set
;.5 (rouy: yeulr,Y,...,,D)

is monochromatic.

Proof. For the given values of r and ¢, let Ay, 4,, ..., 4, be the sets, and ay, ay, ..., da, be the
numbers, from Lemma 5.6. Now, let U(%) = C; U C, U ... U C, be a t-coloring. We will find
the desired monochromatic set of the (5.5) as a consequence of Lemma 5.6.

Let ¢: 4) U 4, U ... U 4, —> of be a bijection. Suppose that the elements of each of the
sets A4; are linearly ordered by <; for i=1,2,...,r. To each r-tuple
r

Wi, vy .., ¥%) €A X A3 X ... X A4 we assign the set U U ¢@). Consider the
i=l u; €;v;
t-coloring

’

Al X A3X .. . XA, =C{UC,U...UC

defined by
GLvy...,v) €C i U U W) €.

J=t uy € vy

Since the sets of the form (5.5) correspond to sets B; X B, X ... X B,, B; G A, |B;| = 2, then
Lemma 5.7 follows at once from Lemma 5.6. ®

Note that when ¢ = 2 then by (5.4) we have m < 3%,
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Proof of Theorem 5.5. We will apply Lemma 5.7 iteratively. Let m = T3(4k — 2) and suppose
that the power set AZ) of some m-element set Z is 2-colored. By Lemma 5.7 we can find
pairwise disjoint nonempty sets Y&V, Y0, ..., Y,f,ll) with m; = T3(4k — 4) such that the set

[Yél) U Y(l): YW e U([Yl(l), Yz(l)’ o Yerl,)})

is monochromatic. Now apply Lemma 5.7 again to obtain nonempty pairwise disjoint sets
Y@, vr?,. ., r2eudr®, v, .., vdD

with m, = T3(4k — 6) so that the set
r@ v y?: y@ e vy, v?,...,v2)}

is monochromatic, etc.

This process is continued until we finally obtain nonempty pairwise disjoint sets

YéZk_l), Y](Zk—l) € U({Yl(Zk_Z), Y1(2k—2)’ . Y'S'Z;:—ZZ)})

(since my;_1 = T3(0) = 1) so that the set
Q-0 y Y@=, yk-D ¢ y({y kD))

is monochromatic.

Now, since each of the sets Y, (‘), i=1,2,...,2k—1, has one of two colors, then there must

e . R i)
exist indices i} < iy < ... < i; such that all the sets Yo , 1 € j < k, have the same color.
Howcver, by the constructlon of the Y§’, the color of any {(nonempty) set

Y = Yo U Y ¥ ..V Yo N with sy < s; < ... < 54 depends only on the order of Yé’
v )
Thus, U ({Yo 0%, "‘ B is monochromatic and the theorem js proved. B
If our state of knowledge in the hypergraph case of Ramsey’s theorem is considered
unsatisfactory (we do not even know the order of growth of the Ramsey function r3(£)), here the
situation is much worse. While the upper bounds we have derived are expressed in terms of

multiply-iterated exponential functions, the best lower bounds currently known are incomparably
smaller.

Theorem 5.8

Lk

x|

k2
(5.6 Sk, 2 52
e

and
Ulk,2) > 2%/log 2k .
The proofs are based on a standard use of the proBabilistic method (cf. [ES74]). The lower bound
for U(k, 2) is stated in [T81]. Here, we give only the proof of the first inequality.
Let us call a set {xy, xa, ..., x;} € [1, n] good if
|20eq, X2 o o0y xp}] = 2% =
To each such set associate the set of all possible sequences
i X3y + Xipy ..o xy F X+ .o+ x). Tt s clear that:
()  Each sequence is associated with at most one set;

(i) A good set is associated with k! different sequences.
Thus, since there are at most [Z] possible sequences (they are all increasing) then there are at most
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1

T [Z] good sets.

Now 2-color the integers in {1, n] randomly so that each integer is independently colored red or
blue with probability 1/2. Then, if

) % [,’;]z-z‘” <1

then there must exist some 2-coloring without a monochromatic set of the form 2X satisfying
|X[ = k and [2X| = 2% — 1. A simple computation shows that (5.7) holds provided

and the assertion is proved. ®

If not all the subset sums are required to be distinct, then the corresponding quantity S* (k, 2) is
only known (by unpublished results of Erdés and Spencer) to satisfy

S*(k, 2) > explck®/log k) .

As we noted at the beginning of this section, one can give an upper bound for S(3, 1) of the
form ¢''°8*. It would be very interesting to know if a similar “small” upper bound exists for
5S4, 0.

6. van der Waerden’s Theorem

The celebrated theorem of van der Waerden on arithmetic progressions forms a cornerstone in
the edifice of Ramsey theory. In this section we will discuss various numerical aspects of this result.
For completeness, we also give a statement and short proof of the theorem.

Theorem 6.1 (van der Waerden [W27]).

For every pair of integers & and r, there exists a least integer W = W(k, r) such that for every
r-coloring of [W]=1{1,2,..., W}, some monochromatic arithmetic progression of &k terms must
be formed.

As often happens, it turns out that it is easier to prove a somewhat stronger statement (which we
take from [GR74]). First, we need some notation.

Let [0, £]™ denote the set of m-tuples of nonnegative integers not exceeding £. Let us call two

m-tuples (xy, ..., xp), (1, ..., Xp) £-equivalent if for some i > 0:

'

J<i =>xj=xj,
,

Xi=x;=¢,

i>i >x; <, x/<¢.
If i = 0, then only the last condition applies. For any £, m, consider the statement:
For any r, there exists N = N (¢, m, r) so that for any r-coloring x: [N]1 —> [r]
m
S(¢,m): there exist positive integers @, d, . . . , d,, such that x{a + > x;d;) is constant on

i=1
each £-equivalence class.
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Theorem 6.2 [GR74]
S (£, m) holds forall &, m > 1.

Proof. (i) S(¢,m) forsomem > 1 2 S(¢,m +1). For a fixed r, let M =N, m,7r),
M’ =N(¢,1,r™) and suppose x: I[MM']—> [r] is given. Define the induced coloring
x': [M']—> [r¥] so that

X () =x' k") iff x(hM =) =xk'M —j) for 0Sj <M.

By the induction hypothesis, there exist a' and 4’ such that x'(a' + xd') is constant for
x €10, 2 — 1. Since S(¢4, m) also applies to the interval [(a' — 1)M + 1, a’M]: = I then by the

m
choice of M, there exist a,dy,...,d, with all sums a + Y xid;, x; €10, 2], in I and with

=1
x{a + % x;d;) constant on ¢-equivalence classes. Set d; = d; for i € [m] and dpey =d'M.
Then S (¢, m + 1) holds with these choices.
() S m)forallm>21 & S@+1,1). For a fixed r, let x: 2N, r, )] —> [r] be
arbitrarily given. Thus, there exist 4, dy, . . ., d, such that for x; € [0, £}, a + i x;d; is bounded

i=]

r
above by N(4,r,r) and x(a + 3 x,;d;) is constant on £-equivalence classes. By the pigeon-hole

-1
principle there exist «, v € [0, r] with # < v such that
u v
x{a + 3 d) =xla + 3 ¢d) .
i=1 im

Therefore,

xla+ 3 ed) +1(3 d))

i=] i=u+l

is constant for ¢ € [0, £]. This proves S(¢ + 1, 1). Since S(1, 1) clearly is true then the theorem
holds by induction. ®

Of course, Theorem 6.1 is the special case m = 1 in Theorem 6.2.

The upper bound on Wik, r) resulting from this proof is quite large. Essentially, it is given
inductively by a function in two variables, and grows like the Ackermann function (cf. [Sp83]). In
fact, no proof is known which yields an upper bound on W(k, r) which is even primitive recursive!
The same also applies to the special case W(k): = Wik, 2).

On the other hand, the strongest lower bounds for W (k) are much more modest, namely, just
exponential in k (cf. Theorems 6.3, 6.4). What the truth really is here represents a central open
question in this whole area.

Theorem 6.3 [Ber681

If p is prime, then

(6.1) Wp+1)>p-2°,
Proof: For simplicity, we only prove a slightly weaker result:
6.2) Wp+1)2p2-1).

Let GF(2P) denote the finite field with 2° elements, and fix a primitive element o € GF(27). Let
Vi, ..., Vp bea basis for GF(2?) over GF(2). For any integer j, set

Q‘i = ajvy +a2jv2+. .. +ap,-vp s Gy € GF(Z) .
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Let
Co=1{j: a; =0, 1<j<p@ -1},
Ci={:a;=1, 1<j<p -1},
We claim that neither Cy nor C; contains a (p + 1)-term arithmetic progression. Suppose, on the
contrary, that {a,a +d,...,a + pd) C C; forsome i. Set §=a®, v = o?. Since
1<a<a+pd £p-1)
then d < 2?7 — 1 and so, since « is primitive, we have v » 1. Therefore, 8, By, . .., 8y 7! are all

distinct and since 7% = a®*+#¢ then the clements 8, 87, . . ., Bv° all have the same first coordinate,
considered as vectors.

Case 1. i = 0. Then B, Bv,...,B8y""" are p vectors in a (p — 1)-dimensional space (since the
first coordinate is 0), and hence, they are dependent. Thus, there exist ag, ay,...,a,_; € GF(2),
not all 0, such that

p-l1 .
2 at(ﬂ‘)") -0
i=0

and so,
p-1
Tar =0
i=0
which is impossible for v € GF(2?), v = 0, 1 (cf. [MS78, Ch. 4, Th. 10]).

Case 2. i =1. Thus, By~ 1), 8(+* = 1), ..., B(3* — 1) belong to a (p — 1)-dimensional space,
which implies

? .

E a,‘ﬁ(‘Y' - 1) =0

i=0
for @; € GF(2) not all 0. Dividing by S(y — 1), we again see that v satisfies a polynomial of degree
at most p — 1, a contradiction. ®

For general k, a slightly weaker lower bound is available (cf. [GRS80)).

Theorem 6.4

2k
(6.3) wk) > %k A+o0).

The proof is based on the following lemma, which is a consequence of Theorem 2.2.

Lemma 6.5. Let Ay, Ay, ..., A, be events with Pr(4,) < p for all i, and with a dependence
graph having maximum degree d. Then

(6.4) epd+1) <1 > Pr((y 4)>0.

Proof. We apply Theorem 2.2 with x; =...=x, = d/(d+1). The hypothesis of Theorem 2.2
then becomes

dd

6.5) p < W .

Since
d

pd+1) 1+% <epd+1) <1
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then (6.5) is satisfied and thus, by Theorem 2.2, Pr((} 4;) > 0. ®

Proof of Theorem 6.4: We red-blue color [1, n] randomly so that each integer in [1, n] is
independently assigned the color red or blue with probability 1/2. To each k-term arithmetic
progression P associate the event A,: “P is monochromatic”. Two vertices P and Q in the
dependence graph T form an edge if PN g # &, The maximum degree d in T clearly satisfies

d < nk. Thus, by Lemma 6.5, if n < ;—k (1 = 0(1)), then Pr(() Ap) > 0. This implies that
P

there are 2-colorings of [1, n] having no monochromatic k-term arithmetic progressions and the
claim is proved. ®

The estimation of W{k) is closely related to the following problem:

Estimate

v (n): = max{|S|: § S I1,n], S contains no k-term arithmetic progression] .

The first major result for this problem was due to Roth [Ro53] who showed

n
(6.6) vi(n) = O[E)g—n] .

This was followed by the result of Szemerédi [Sz67] that v4(n) = o(n), and finally by the
celebrated theorem of Szemerédi [S275], settling a $1000 conjecture of Erdés and Turdn:

Theorem 6.5 [Sz75)
For all k,
6.7 vi(n) =o(n) .

(We will not present a proof of (6.7) here.) In this section we will restrict our discussion to the case
k = 3. In this case, the best current bounds are given in the following result.

Theorem 6.6
(6.8) n exp(—c; Viog n) < v3(n) < con/log n)*

for suitable positive constants ¢y, ¢,, c3.

The lower bound is a classical result of Behrend [Behd6]; the upper bound is due to Szemerédi
and Heath-Brown [H]. First, we give a proof of the lower bound.

Ford 2 1 and x < n, set

k
x=3x02d+1), 0<x;<2d.
j=0
Let

X
Nxg xp, ..., x): = (3 xPH2
i=0

and define
Xnas:i={x: 1€x<n, 0<x;<d foralli, and
Nlxg x1,...,x) =5},

Claim: X, ;. contains no 3-term arithmetic progression.
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Proof: Suppose that

3
x =3 x0d+1),
=0
k .
y - Ey,-(2d + 1) s
i=0

k
z =3 z(2d + 1)
i=0

satisfy x + y = 2z where x # y, z € Xp,a,s. Since x;, y;, z; are all less than d + 1 then in fact
we must have x; + y; = 2z; for all i. Furthermore,

Xo+ yo Xty
T T

NGxo, X1, ..., %) =NQ@o, yi,. .., p) =N

which implies
k
Sl —-y)=0,
i=0

i.e., x; = y; for all i, a contradiction.
For fixed d we have

K~ log n
log(2d + 1)

and there are at most d%k possible values for s. The union of the Xa,a,s over all s contains all sums
> x;(2d + 1), 0 € x; € d, which are all at most ». There are essentially n27% such integers.

i
Thus, for some s

n
) 2 |X,4,] > T

Setting d = exp(vlog n) we deduce
- [Xpasl = n exp(—cVieg n)

for some ¢ > 0, as required.

Instead of the upper bound in (6.8), we only show here that »;(n) = 0(n). There are other
relatively simple proofs of this fact (cf. [RS78], [G81]). The proof give here, based on ideas of
Ruzsa and Szemerédi, is taken from [EFR86].

Theorem 6.7
6.9) viln) = o(n) .

Proof: Let G = (¥, E) denote a graph and let 4, B C ¥ be a pair of disjoint non-empty subsets
of V. The density of the pair (4, B) is defined to be the ratio

d(4, B): = e(4, B)/|4||B|

where e (4, B) denotes the number of edges {a, b} with a € 4, b €B. The pair (4, B) is called
e-uniform if for all 4' € 4, B’ C B with |A'| > /4], |B| > ¢[B| we have

|d(4',B")Y —d(4,B)| <.

A partition ¥ = Cy U C; U ... U Cy is called ¢-uniform if:
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) |Col < €vl;
@ lcl=lC =... =Gl
(3) All except at most ¢ [Izc] of the pairs (C;, C)), 1 i <j < k, are e-uniform.

The following fundamental result (which we state here without proof) is due to Szemerédi.

Lemma 6.8. (Regularity Lemma [Sz76)). For every ¢ > 0 and positive integer £, there exist
positive integers nole, £) and kole, £) such that every graph with at least nole, £) vertices has an
¢-uniform partition into k classes, where k is some integer satisfying £ < k < kole, £).

Now, let A € [1, n] and let X, ¥, Z be three disjoint copies of the interval [1, 3n]. Consider
the set S of all triples {x, y, z},x € X,y € Y, z € Z such that

(6.10) y—x-z—y-z;xeA.

Further, let G be the graph consisting of all pairs contained in the triples of S. Thus, G has 9n
vertices, |E(G)| > 3|4|n edges, and E(G) can be decomposed % |E(G)| edge-disjoint triangles
{x, y, z}, which we call “ordinary” triangles.

Claim 6.9. [RS78] If G contains a triangle which is not ordinary, then 4 contains a 3-term
arithmetic progression.

To see this, let x', y', z' be such a triangle where y: - x: #z'—y'. Thus, fora: =y'—x'and
b:=z'—y',wehavea € A, b € A, and # - i—g—f—— € A, which forms the required 3-term

arithmetic progression.

Suppose now that |4| = an for a fixed positive constant « independent of n. We will show that
for n sufficiently large, 4 must contain a 3-term arithmetic progression. Set m = 97 and set

|E@)| =8 ['5'] > 3an?

where 8 is a fixed positive constant independent of n. Further, set ¢ = 8/15 and £ = [e1]. We now
apply the Regularity Lemma to G with these choices (and n > nole, £)). The number of edges not
contained in pairs with density at least 8/6 is at most

)+ & ) 2] ) [2

After the deletion of these edges we obtain a graph G’ which still contains a triangle T (there were

% ['5'] edge-disjoint triangles in G). Moreover, all three edges of this triangle are contained in

2
+em2<%['g].

pairs which are ¢-uniform and which have density at least 8/6. Let C,, C, and C, be the three
partition classes containing the three endpoints of T.

Claim 6.10. If all three pairs (C,, Cp), (Cp, C;) and (C,, C,) are e;uniform with density at least

B/6 then there is a vertex x € C, which is contained in at least ~1% IC,,IICJ triangles.
Proof: If both (C,, C,) and (C,, C,) are e-uniform then we can find at least (1 — 20| C,| vertices
x € C, which are joined to at least % ~ ¢{]C;| vertices of C;, for i = p and i = g. Fix one such

vertex x and let N’ be the set of neighbors of x in C;. Since % —e= -% > ¢, we find there are

3
at least [Tﬂo_] le“qu edges joining vertices of N2 and N{. Each such edge clearly corresponds to
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a triangle containing x. ®

To complete the proof of Theorem 6.7, note that by Claim 6.10, for m sufficiently large (and &
fixed) there are at least

3
6.11) [-1%] I lIc,| > 1G] = 1¢,l

triangles containing the vertex x. Since no two ordinary triangles in G share two vertices then there
are at most |C,| = |C,| ordinary triangles containing the vertex x. Thus, by (6.11), G contains a
triangle which is not ordinary, and so by Claim 6.9, 4 contains a 3-term arithmetic progression.
This completes the proof of Theorem 6.7. ®

We conclude this section with several remarks. To begin with, as an indication of the extent of
our ignorance on the true order of growth of the van der Waerden function W k), the first author
has made for some time the following offer.

Conjecture ($1000) For all k,

2
wk) <22 } k.

The known values are:

W2 =3, W@ =9, W) =35, W(5) =118,

An interesting variation which was considered in [G83] is the following. Define W* (k) to be
the least integer such that there exists a set X(k) € {1, 2,...} with [X(k)] = W* (k) so that any
2-coloring of X (k) always forms a monochromatic k-term arithmetic progression.

Problem 6.11
Does W*k)/W(k) —> 0 as k —> o ?

It is known [G83] that W*(2) = W(2), W*(3) = W(3) but W*(4) < 27 < 35 = W(4).

7. Concluding remarks

This paper has dealt almost exclusively with asymptotic bounds for various results of Ramsey
type. The exact values for the associated functions are invariably much more difficult to obtain. As
an indication of this difficulty, we list in Table 1, all known (non-trivial) values of r (k, £), k < ¢,
together with the best bounds cutrently available for several other values of r(k, £). It would
appear, for example, that the determination of (5, 5) will require some significant new ideas. The
reader is referred to [CG83] or [RK] for a fuller discussion.
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KNS 3 4 s 6 7 8 9 10
30 6 9 14 18 23 28-29 36 39—44

4 — 18 25-28 39—44
5 — = 42-55 5794
6 - - - 102—169

Small values of r(k, £)
Table 1

In the other direction, the best upper bound we currently have for the van der Waerden function
W (k) grows like the Ackermann function. While this is not known to be the true order of growth
of W(k) (and, in the opinion of many combinatorialists, is a gross over-estimate), it turns out that
there are in fact a number of natural problems of Ramsey type which do have functions which grow
this rapidly, and indeed, much more rapidly. The earliest example of this phenomenon was
exhibited in the celebrated result of Paris and Harrington [PH77). To state their result, we need
one definition. Let us call a finite set S of positive integers large if min(S) > |S|. Consider the
following statement:

For all k and f, there exists a least number PH (k, t) so that if n 2> PH(k, t) then in any

(7.1)  t-coloring of the k-element subsets of [1, ] there must exist a monochromatic large set
B Clk +1,n]

The truth of (7.1) follows easily from the infinite form of Ramsey’s theorem. What was
unexpected was that while (7.1) is a perfectly well-defined statement in Peano Arithmetic (PA)
(that first order theory of numbers which includes the basically finitistic methods of number theory),
it is in fact unprovable in PA. One way of proving this, as pointed out by Ketonen and Solovay
[KS81], is to show that the function PH (k, 1) grows so rapidly that it cannot even be defined in
PA. A nice-description of this work is given in [Sm80], [Sm82] and [Sp83].

In some sense, even more striking is a very recent result of Friedman, which can be considered as
a finite form of a well known result of Kruskal [Kr60] (which asserts that the set of finite trees is
well-quasi-ordered under homeomorphic embedding). This finite form is given by the following
statement:

For each k > 1, there is a least number F(k) such thatif n 2 F(k) and Ty, T, . .., T,
(7.2)  is a sequence of trees with 7; having at most k + i vertices then there exist i < j such
that 7; is homeomorphically embeddable in T;.

Although (7.2) only deals with finite sets of finite objects, any proof of (7.2) must, in a certain
precise sense, invoke the concept of uncountability. Again, this is due from one point of view to the
extremely rapid growth rate of the function F(k). A full account of these fascinating developments
can be found in [Sm82], [Sp83} and [NT871.

Acknowledgements. The authors gratefully acknowledge the useful comments of P. Erdds and
Z. Fiiredi given during the preparation of this paper.
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