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1. INTRODUCTION AND BASIC TERMINOLOGY

In this paper we present a Ramsey theorem for certain categories which
is sufficiently general to include as special cases the finite vector space
analog to Ramsey’s theorem (conjectured by Gian-Carlo Rota), the
Ramsey theorem for n-parameter sets [2], as well as Ramsey’s theorem
itself [4, 6]. The Ramsey theorem for finite affine spaces is obtained here
simultaneously with that for vector spaces. That these two are equivalent
was already known [5, 1], and the arguments previously used to show that
the affine theorem implies the projective theorem are also special cases of
the results of this paper.

The argument used here to establish the main result is essentially the
same as that used for n-parameter sets [2]. What we do here is to abstract
the properties of n-parameter sets which suffice to allow the induction
argument. In particular, the properties described for n-parameter sets in
Remarks 1-3 of {2] are essential.

In order to state the Ramsey property for a category C we must have a
notion of rank with which to index the objects and subobjects of the
category. To this end, it is convenient to consider henceforth only
categories C with the following property:

(a) The objects of C are the nonnegative integers 0, 1, 2,..., and if
1>k CU,k) = o, where C(, k) is the set of all morphisms from / to k in C.

Using this property, we define a rank on subobjects of an object / in C.
Namely, if & — Jand &' = 1 are representatives of the same subobject of
I, then there must be isomorphisms ¥ —° ' and ¥’ = k. But by (a), this
means that ¥ = k'. We define the rank of this subobject to be k, and we
refer to it as a k-subobject of 1. We denote by C [ ,1(] the class of subobjects
of 7 in C of rank k. We make the convention that for k <0, or / <0,
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418 GRAHAM, LEEB, AND ROTHSCHILD

C[II(] =@. In order to make our induction argument work, we need a

finiteness condition. We assume in addition to (a) that all categories
considered here satisfy:

(b)  For each pair of integers there is an integer y, , such that C[ II(] is
a finite set with y; ; elements. In particular, Yo,0=1.

For convenience, all categories we consider are assumed to satisfy

() All morphisms of C are monomorphisms.

Ifxk—1isa morphism of C, we let 1 denote the induced mapping on
subjects of . That is, if s —* k represents a subobject of k, then f takes this
subobject into the subobject of / represented by the composition fg. Thisis

clearly well defined, and f: C[’s‘] - c[:] An r—coloring of C[i] is a function
e C[i] —(1,....7}. We say that a subobject has color i if its image under
c is i. An rcoloring ¢ of CLI,] induces an rcoloring on C[’s‘] by the
composition cf, where k —’ 7 is in ¢. If the image of ¢f is only a single
element, we say that ¢ has @ monochromatic k-subobject, namely, the -
subobject represented by .

We can now state the Ramsey property for a category ¢ satisfying (a)-

():

Given integers k, 1, r, there exists a number n, depending only on , I, r,
so that for all m > n, every r-coloring of C['Z] has a monochromatic I-
subobject.

When ¢ has morphisms & —/ 1 which are all the monomorphic functions
from {1,...,k) to {1,..., 1}, then this is just the statement of Ramsey’s
Theorem. If ¢ has morphisms k —/ | which are the linear monomorphisms
from ¥} = <v;,..., %> to ¥, = <v;,..., v>, where v1, va,.. form a basis for
a vector space v over GF(g), then this is the statement of Rota’s conjecture.
In this case, the k-subobjects of / correspond to the subspaces of ¥; of
dimension k. Other examples of special cases of the Ramsey property will
be given later.

2. STATEMENT OF THE MAIN RESULT

In order to establish the Ramsey property for certain categories C, we
consider a somewhat stronger version of it which makes the induction
argument easier.

Cl;ly....,4): There is a number N =N, (k;rily, ..., 1) depending
onlyonk, r, /,,...,1, such that for any m > N~ and any r-coloring ¢ of c['l:'],

there is an 4,1 < i < », and a morphism , —/ m such that

] ——clfl ——— .

k
\ %
{1
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RAMSEYS THEOREM FOR A CLASS OF CATEGORIES 419
commutes, where incl(;) = i.

This statement always holds for k < 0, since ¢ [2 = o, by convention. If

all the J; are equal, this becomes the Ramsey property stated above.

Theorem 1 below provides the induction step in establishing
Ck;ly, ..., 1) for certain categories. It establishes B(k + 15/,,...,1) if we
know A(k;ly,...,1) for all r and 4, provided the categories 4 and B are
related in a special way. This relation is given by the conditions below.
For a functor M from A to B with M (x) = y for integers x and y, we denote
by M the induced function from subobjects of x to subobjects of y. This is
given by letting M take the subobgrect represented by s —/ x in 4 into the
subobject represented by M(s) =" " y in B.

Conditions on Categories A and B

There is a functor M from 4 to B with M) =1+1, I=0,1,..., a
functor P from B to 4 with P() =1, I=0,1,..., an integer ¢+ > 0, and for

each/ =0, 1,..+ morphisms, 1 =*/ 1 + 1,1 < j < 1, satisfying the following:
P y

I. For eachk+1=0,1,2,..., the diagonal d in the following diagram
is epic, where II (together with the indicated injections) is coproduct, and 4
is the unique map determined by the coproduct to make the diagram
commute:

1
B [k+I] i
k+I
#n
¢h
1+1]
k+]” -
II. For each s ="/ in B and each j=1,...,¢ the following diagram
commutes:
! L/ 1+
I g T MP @)
¢:j
K} s+1

III. For some ! —° | +1 in 4, the following diagram commutes for all
i=1,...,1¢
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420 GRAHAM, LEEB, AND ROTHSCHILD

I+1
I 1+2
15 ﬂ:)
1+1

Remark. Lets+1—"1in 8. Then by III there is some s =" s + 1 in 4
such that

s+1
bsj \:j
s s+2
b5y A'
s+1
commutes in B for each j. By II, the diagram
-T7]
! —_— I+1
T h T M(P(h)
Gs41,;
s+1 s+2
commutes for each j. Thus
h
s+1 -
¢:j ¢U
s I+1
¢.tj M (P (h)e)
s+1

commutes for each j.

THEOREM 1. Let A and B be two categories satisfying the
conditions above. Assume 4(k;l,, ..., 1) holds forallt,,... 1, andr>o0.
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RAMSEYS THEOREM FOR A CLASS OF CATEGORIES 421
Then Bk + 1514, ..., 1,) holds for all1,, ... 1, andr > o.

3. PROOF OF MAIN RESULT

We will eventually need a lemma about »-dimensional arrays of points.
We state it now without proof. Proofs can be found in [3] and [2]. (Itisa
special case of Corollary 4 below, in fact.) We denote by 4” the set of n-
tuples (x,, ..., x,) of elements of x; of a set 4.

LEMMA 1. Given integers r >0, 1+ >0, there exists an integer
N =N(,?), depending only on r and 1, such that if n > N, A is a set of
elements, and A" is r-colored in any way, then there exists a set of t n-
tuples (c, (), ..., x, (), 1 €j <1, all the same color with the property
that for each i, 1 < i < n, either x; (j) = j for all j, or x; (j) = a; for all j and
some a; € A.

Proof of Theorem 1. We use induction on L =1I,+.+/,.
Bk +114,..., 1,) holds vacuously if ,, < k +1 for any i or if k +1 <0 and
trivially if 1 = 0. So we assume /; > k+1 > 0 and ¢+ > 0. If any /, = 0, then
k+1=0, and Bk + 15y, ...,1) holds trivially, since y5 ¢ = 1. So we may
assume all />0, and, in particular, that L > 0. Assume, then, that
Bk +1;1y,..., 1) holds for L — 1, and let {, +..+1, = L, I; > 0.

DEFINITION. For 1 <h <m, suppose k +1 —'1+n is in B, and
f=M(") for some k — j+h-1in 4. For any fixed choice of
Jhr Rl jm=1, 1€ j; <t, let ¢; = ¢44,;. Then the (k + 1)-subobject of
1 + m represented by the composition

S/ L] ém—1
k+1—>Il+h—>1l+h+1—> - —> 1+ m~1—>1+m

is said to have signature (;j,—1,...,j,) with respect to / and m. (The
signature need not be unique for a given subobject, nor must every
subobject have a signature.) An r-coloring of B [it"l'] such that all (x + 1)-

subobjects with the same signature have the same color is called an
(I, m)—coloring.

For integers / and m we define recursively some numbers needed to
prove Lemma 2 below.

v = N4 ;™ L0, D
v;-NA(k;r’m_z;vl +1,...,vp+1)
v,,,-NA(k;r'o;v,,,—l+l ..... Vp—1+1).

The existence of these numbers is guaranteed by the hypothesis of
Theorem 1.

LEMMA 2. With the same assumptions as in Theorem 1, let
I1>0,m>1 be integers; let x 2 v,, + 1; and let B[kil] —‘{1,...,7) be an
r-coloring. Then there exists | +m —° x in B such that cg is an (. m)-

coloring of B 5:?11]
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422 GRAHAM, LEEB, AND ROTHSCHILD

Proof. We use induction on m. For m =1 the lemma is trivially true.
Assume for some m > 2 that it holds for m — 1. Then by induction, and by

vi+tm

the choice of the v, there is some v, + m = x in B such that B[ k+1 | 18

(v +1, m — 1)-colored by cz.

We now color B

as follows: Two subobjects, represented by

k+1
k+1 —*fv, +land k +1— vi + 1 have the same color if and only if for
each choice of j,—1,..., /i, 1 € j; <1, the subobjects represented by the
compositions

! L] om—1
k+l1=——=vn+]1—>v+2—> - —>y +m—=1—>v, +m

and

s L} ém—1
ktl—>vi+1l—>v+1—> - —>y +m—1—>v, +m

have the same color, where ¢, =¢,,4/,,, 1 <i <m-1. This is an " !-

+1

coloring of B Vk‘ +

;call ite'.

Next, we color 4|% by the coloring induced by a. That is, a

k
subobject in 4 Vk‘ is assigned the same color as its image under M in
+ . . .
B v,: +11 . In other words, ' M is the coloring we use. By the choice of Vi,

there is some 7, 1 < i < r*"!, and some ! —" v, in 4 such that the following
diagram commutes:

nn e [0 = ey

A

Thus all the subobjects in M (4 [k]) have the same color in B[,’cill] colored
bye'Mm M (W).

Suppose & +1 ~1+his in B, 1<h<m with f=m(") for some
k=" 1+h—1in4. Consider the following diagram:
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RAMSEYS THEOREM FOR A CLASS OF CATEGORIES 423

¢v|+h,j',
vi+h —_— vith+l — -
M wpf1) Tuh T Up+1
f Pi+h, ju
k+] ———— I+h —_— I+h+1 —_

v14m=1, jme1

— vi+m-1 —_— vitm
T Upm -1 T Upy
Bl4m—1, jm-1
— I+m-1 —_—— I+m
whete  u;=M®), u=MEPG ), i=23,...,m and w,=w,
wy=Pu_y),i=2,3,...,m. By condition II this commutes for each choice
of ju ja+r,...,jm—1. Consider any subobject of I+ m with signature

(ijm—1,...,j1) with respect to / and m. Let it be represented by
k+1="1+m, where ¢ is the bottom row of the diagram above with = 1.
Then u,, e represents a subobject of v, + m. By the definition of ¢' and the
choice of w, all such subobjects with the same signature (1;j,,—1,..., /)

. + . .
have the same color in B[v,“ Hm ], since the diagram above commutes. On

the other hand, consider a subobject of /+m with signature
(hijm=1,...,j), & > 2, and let it be represented by k + 1 —° I + m, where e
is the bottom row of the diagram. By the commutativity of the diagram,
ume = bM (wy '), where v, +h - vi+m is the top row of the diagram.
This means that u,e has signature (h—1;j,—1,..., ) with respect to

vitm the

k+1 |°
color of this subobject is determined only by the j. Thus the color of any
subobject with signature (k;j,—1,. .., j,) with respect to/and m, 4 > 1, has
its color under the coloring ¢z, determined only by the j,. So cz#, is an
(1, m)-coloring, and the lemma is proved.

vi+1 and m—1. Since cg was a (v, + 1, m — 1)-coloring of B[

We may now proceed with the proof of Theorem 1. Let

= Nplk+ Lty ooyl =1, By u 1),
12‘?2r B rih i—1y b i+1 r

a number which must exist by the induction hypothesis. Let y = F% k41,
where y; ;4 is the number given by property (b). Let m = N(y, 1), where
N(y,1 is the number given by Lemma 1. Let v, be the number used in the
hypothesis of Lemma 2 (depending on / and m), and let x > v,, + 1. Finally,

let B[ki]] =‘{,...,r) be an rcoloring. By Lemma 2 there is some

I+ m =—* x in B such that cg is an (I, m)-coloring of B [Lﬁ_"l'] We now color
the m-tuples Gjy,...,jm), 1 < j; <+, by letting Gy,...,j.) and G,,.... k)

have the same color if and only if for each k + 1 —" 1 in B the subobjects
represented by the compositions
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h ¢l j1 $l+m—1, jm
k+tl1l—>]—>1+1—> - - —>+m-1 —> [+m

and

A ¢k $i+m—1,km
ktl1l—>1—>I/+1—> - —>+m—-1 —> I+m

both have the same color in 8 [it”l' . This is a y-coloring of the m-tuples.

By Lemma 1 and the choice of m, we can find ¢ m-tuples
Gi1@,...,jm@), 1 €z <1, all having the same color such that for each :
either j; (z) = z for all z or j; () = j; for all z and some fixed j,. Leti,,..., i,
be the i for which j; (z) = z (there must be at least one of these since there
are t m-tuples here). For 0 < a < 4, let h, denote the composition

Ol +ig, fig+1
Ttig———> 1+ +1—> -

$itig+1-2, fig+1~1
ety 2 > [ty — 1,

where we let i = 0 and iy, =m + 1. Consider the following diagram:

ho br4ig-1, ) by
I —— 4 ~1 = 1+i) > [ 4iy—1 T
bl+iy-1,) Sr+iz—1,j
M(el) -
I+i —> 1+i, —
—_— Br+igp—1.j . hy—2
- I+ig_p~1 #_, I+ig_y _—
Dlrigo-1,j
Mei_y)
I+i4_,

hy- Brig-1-1,g hay Dreig-1,j ) hy
% I4igq-1 —> 45— I+ig-] tig —  +m
Prrigy-1,
d—1 ) M(ed—l)

M(ed-z)
—_— I+ig_,

where the 7 +i;—5s — 1 =" 1 +i;_,,; - 1 in 4 are those guaranteed by the
Remark (following Condition III) to make this diagram commute for each

J=12,...,t 438



RAMSEYS THEOREM FOR A CLASS OF CATEGORIES 425

By the choice of the », we have for any & + 1 —* | that the ¢ subobjects
represented by

I ho $l+iy-1,j
k+l-ﬁl—>l+i]—l—-—>l+i1—>"'

) Mleg—leg—2 - - eze)) I+m

L}
—_— 1+i,,—>l+min8[k+1], I1<j<,

all have the same color. By Condition II, the following diagram commutes
for all j:

I4ip~1 —&U—a 1+,
T ko M (P (hy))
! 9.4 > I+1
Then letting o« = hyM(es_, - - - e; P(hy)) we see that for k + 1 —* 1 in B the

subobjects represented by the + compositions

h o, a
k+tl1—>1—>1+1—>1+m 1<€j<t,

all have the same color. Thus cga¢,,; are equal for all j=1,2,...,s on
]
8 [k +1]-

Now consider any subobject of M (4 [ IIC]) in B [ ,i:ll . Let it be
represented by & +1/ ~I+1in B, where =MD,k —' I'in 4. Then the
subobject represented by of has signature Gy jm, . . ., jiz+)) With respect to
and m, since of is just kyM(ey_, -+ - e, P(ho) f'). Since I + m is (7, m)-colored
by cg, all subobjects of / + m with this signature have the same color. Thus
cga gives the same color to any subobject of M (4 [,Ic]), since the signature

was independent of the choice of f. That is, cgaM (4 [,I(] = {¢} for some g,
1<qg<r

Consider the coloring cgag; , on B [ k-lH]' By the choice of J, either there
is some /, —" 1 in B such that

cgad] 1 fp

I
B, %, b, p#q.

or there is some /, — 1 —'% 1 in B such that

- a],
qu 1 cgadl 1 fg

k+1 lal.

In the former case, we have the desired monochromatic subobject, and the
theorem is proved. Hence we may assume that
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1L-1 cgadl 1 fq
b —_—> g}

Ble+1

We recall that cgag;,) = cga¢y, ; On B [ k_’H] for all j. In particular,

—_— I,—1
cgady, i fy (B 4q|| =g} forallj.

By Condition II, ¢, ; f, = M(P(f,,))d),q_l,j, j=1,...,t. Thus

— l,=-1 .
cgaM(P(/q))dt,q_l,j Blg+l ={g}, j=1,...,1.

Now consider any subobject in (4 ["';l ), and let it be represented by

k+1=1, in B, where f=M("), k— I,-1 in 4. The subobject
represented by M (P(/))f = M(P(f)f) is in M (4 [}(]), and thus has color ¢ by

the coloring iga. So cgaM (P(7)) colors all subobjects in M (4 ["’; 1]) color q.

I—1

We also saw above that cgaM (P(f)) colors all subobjects in big-1,; B (244

)

color 4. But by Condition I, this accounts for all of B klj.l , and hence

1, =M L s the desired morphism, and the theorem is proved.

4. CONSEQUENCES

PROPOSITION 1. Let € be a class of categories such that for each
category B in € there is a category A in 6 such that A and B satisfy the
conditions of Theorem 1. Then B(k;i,,..., 1) holds Jor all k, 1y,...,1,
and all Bin €.

Proof. B(-1;l,,...,1,) holds vacuously for all /,,...,/, as observed at
the beginning of the proof of Theorem 1. This holds for all & in . Thus
for each B we can find a suitable 4 and apply Theorem 1 to obtain
B©;I,,..., 1) for alliy, ..., L. Proceeding in this fashion from 0 to 1 to 2,
etc., we obtain B(k;/,,...,14) forallk,/,,..../, and Bin &.

COROLLARY 1 (Ramsey). Let C be the category with objects the
nonnegative integers and morphisms k ~ 1 all the monomorphic functions
Srom {1, k) into {1,...,1}, where composition is Jjust composition of
Junctions. Then C(k;l,,...,1,) holds in general.

Proof. We must find a class € containing ¢ which satisfies the
conditions of Proposition 1. For @ choose the single category C itself. This
clearly satisfies (a)-(c). So for 4 and B both equal to ¢, we must show that
they satisfy the conditions of Theorem 1.

Let P be the identity functor on C. For any & —I'in G, let M(f) be the
function k+1— /+1 in C given by letting /' (x) = s(x), x <k, and
S e+1)=1+1. Let ¢ be the function from (1,...,1} to {1,...,1+1)
which acts identically on {1,...,/. That is, ¢;(x) = x for x < /. Then we
claim these choices, together with choosing ¢ = 1 satisfy I-III.
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RAMSEYS THEOREM FOR A CLASS OF CATEGORIES 427

Consider a subobject in C[Li‘l represented by some k +1 4

First suppose f(s) =1 + 1 for some s. Then s represents the same subobject
aS fr, 441> Where x, 44 is the permutation of {1,. .., k + 1) fixing everything
except s and k + 1, which it interchanges. =, ;4 is an isomorphism and is
its own inverse. Let k — / be defined by letting 1 (x) = fx, 141 (),
1 € x € k. Then clearly M(f') = fx, ;4. Thus the subobject we chose is in
M [ ,Ic]) The only other subobjects are represented by some & + 1 141

where f({1,...,k+1) c {1,...,/). Then letting k +1 —" | be defined by
SO =f&), 1< x<k+l, we have f=¢,7, and the subobject is in
o (C [k-lH])' This establishes I. II is clear from the definitions. III follows
by taking e to be ¢, since M(¢) (x) =x for 1 € x <1 This establishes
Corollary 1. We note that if one examines the argument used in the proof

of Theorem 1 for this special case, the usual proof of Ramsey’s Theorem
emerges.

Let v be an infinite-dimensional vector space over GF(q) with basis
Vi, Va.... Foreachk=0,1,..., let ¥V, = <v;,...,»u>, Vo= <0>. Let C be
the category which has objects 0, 1,..., and morphisms & —* 1, where ¢ is
a linear monomorphism from ¥; to v;. Composition is ordinary composition
of mappings. C clearly satisfies (a)-(c).

COROLLARY 2 (Vector Space Analog). For the category C
described above, C(k;l1,,...,1,) holds in general.

Proof. We apply Proposition 1 to a class containing C. Let 4 be an
infinite-dimensional vector space over GF(g) with basis a,, a,,..., and let
Ap=<ay,...,ap>, Ag=<0>. For m=0,1,2,..., the category C, is
defined as follows: The objects of C,, are 0, 1, 2,..., and the morphisms
k=" are all pairs (w,¢) where we 4, ®V, and ¢ is a linear
monomorphism from ¥, to ¥,. Letk - I, where w = T™ 4, ® w;, w; €V},
and 1 =¥ n be morphisms in C,,. Then their composition is defined to be
k=YY n, where y =x+ 3" a ®yw). Thus we can think of these
morphisms as certain special affine transformations from 4, ® ¥, into
A, ® ;. (a)-(c) are satisfied for the C,,. We choose for our class € all the
Cn. When m =0, we get the category C of Corollary 2.

For each m, let B~C, and 4 =C,4;. We show that these satisfy
Theorem 1. To define M, consider a morphism & =% in Cn+i- Then
W€ Any ® V; can be written uniquely as w=w'+a,4 ® w,4y, where
w' €A, ®V,. Let ¢:Viyg—Viyy be determined by letting
¢ g41) = Vg1 + Whmat, and ¢ =¢ on V,. Then define M((w,¢) = W', ¢'),
where k +1 =% 1 4 1 is in C,. One can verify by a direct check that M
preserves composition. We next define p. Let & —** | be in Cyn. Then
P((w,¢)) = W",¢"), where w" = w + ap4, ® 0, and ¢" = ¢. Clearly P preserves
composition. Also, since the identity morphism for & in C,, is (0, 1;), where
1, is the identity transformation on v;, and similarly for C,4,, we see that
M) =1+1and P() =1 for each /. Finally, let + = | 4,,| = g™, and for each
element a € 4, and each / let ¢y, = (a @ v;4),¢) in C,, Where ¢ is the map
from v; to v;4, acting identically on ¥;. Then these choices are sufficient to
satisfy I-III.

To check I, let k +1 —*"#) 1 +1 represent a (k + 1)-subobject of 7 + 1
in C,,. First suppose ¢' (V;4)) € ¥,. Then we can choose some isomorphism
V: Vel = Vier such that ¢'y(vp) c v, and ¢ yGyy) = vy +v' for some
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428 GRAHAM, LEEB, AND ROTHSCHILD

v' € ¥.. Furthermore, for a suitable choice of v € 4,, ® V;,, we have
W', ¢) 6,9 = ', ¢'y), with W' €4, ®¥,. Of course w',) and &', ¢'y)
represent the same subobject since (v,y) is an 1somorph1sm Now let
k=" be in C,,,H, where ¢ = ¢y’ on v, and w = W' + a,,,, ® v'. Then we
have M ((w,¢)) = (5", ¢'y). Thus all subobjects represented by a (w', ') with
¢ (Via) € V; are in M (Cpay [,I‘]) On the other hand, if ¢' (V4,) C V;, then

W', ¢') = (w" +a ®vy,,¢) for somea € 4, and some w" € 4,, ® ¥;. But

W' +a®vy,d') =@ @ vy, e) W', ¢") = b1,a W, 8",

where ¢" = ¢' on ¥4y, ¢": V4ur = V. Thus the subobject is in ¢, (C,, [
This establishes 1.

k-IH])'

To check II, let s — - ”I in C, Then MP(w,e) =W, ¢),

s+1—>%" “1+1 where w'=w and ¢' is the mapping determined by
letting ¢’ = ¢ on ¥,, and ¢' (v 41) = v;4;. Clearly

@@ vy, e)w,¢) = (w',¢') (@ ®vy,e).

This establishes II.

Finally, for III, consider in C,+; the morphism

@m+1®v)+1, )
| ———> 1 +1.

]

M (41 ® viyy,e)) = (0, ¢'), where ¢ acts identically on ¥, and
¥ (r41) = vis + 4. Now we have for eacha € 4,

@ ® v e) @® vy, e) =0, ¢ )@@ vy, e) .

This establishes III.

Thus G, (k;!y,...,4) holds in general for all m by Proposition 1. In
particular, as noted above, if m =0, this establishes Corollary 2. We note
also that for m = 1 the subobjects of an object / can be considered to be
affine subspaces of ¥, Thus we have also proved the affine version of
Ramsey’s Theorem, which we state below.

COROLLARY 3 (Affine Analog). For ¢ =C, as described above,
Clk;ly, ..., 1) is true in general.

The application of Theorem 1 to the case 4 =C,, B=C, is just the
statement that the affine analog for & and all /,, ..., I, implies the vector
space analog for k +1 and all 7,,..., /. This result was already known [1,
5], and the previous proof is the same as the proof of Theorem 1
specialized to this case. There was another way given in [5] to show that
Corollary 3 implies Corollary 2. Namely, it shows that Cyksly, .. 0)
implies Co (k:/y,...,4). This argument is also a special case of Theorem 1,
and we can descrlbe it here.

Actually, we replace C, with the equivalent ¢}, defined by letting k -
in ¢p if and only 1f k 1=~ 1-1isin Co. We also must adjoin an identity
1 to Cp. If k —'( s in ¢y, then M (w, ) = (0, ¢) in Cj, where we recall
that k +1 =% 1+ 1 in Co. We let ¢+ = 0, thus making the choices of P and
¢;; unnecessary. Clearly ¢ [k +1] -M(c [ k]) and I is satisfied. II is
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vacuously true as is III, since r=o0. Hence by Theorem 1, if
Cy sty ..., 1) holds for all 1,,...,1I, then Cy(k +1;/,,...,1) holds and
this is just Co (k;y, ..., 1), as desired.

Finally we obtain the Ramsey theorem for n-parameter sets. We refer
the reader to [2] to see that the definitions used there are essentially the
same as those we will use here. In particular, the categories corresponding
to the notions in [2] are the quotient categories described in the last
paragraph in this paper. That is, the partially ordered sets of subobjects
are isomorphic.

Let G be a finite group, and let 4 = {a,,....a,} be a finite set. Let
C(4,G) be the category with objects 0, 1, 2, ..., and morphisms described
as follows:

.

. ) .
For each k and /, the morphisms k ="' 7 are diagrams

s !
G<—11,....,.0ua—>{1,...,klu 4,

where fis any epimorphic function which acts identically on 4, and s is any
function such that s(a) =1¢€ G for a € 4. Composition of the morphisms
k=Y 1 and 1 =7 m is given by & —Veess0 m, where fg is ordinary
composition of functions, and sg - ¢ is defined by s(g(x)) - t(x) = (sg - 1) (x) in
Gforxefl,...,mua.

We note several things about this choice for (4, G). First there is no
mention of the relationship of G to 4. G need not be a permutation group
on 4, nor even act on it at all. This was a necessary assumption for part of
the proof in [2]. Second, we allow |4| < 2 here, where in [2], |4] > 2 was
required. Actually, in the situation in [2] where the n-parameter sets under
consideration had constant set B ¢ 4, we did not need |B| > 2. But this
took a separate argument. What we have there is the general result for »-
parameter sets for arbitrary sets of constants B.

COROLLARY 4 (a-Parameter Sets). If C=C4,G), then
Clk;ly, ..., 1) holds in general.

Proof. Again, we consider a class € containing C(4,G) for which
Proposition 1 holds. There is more than one possibility here. We will give
the proof in detail for one class €. Then we will describe another class but
omit the detailed verification of I-III. It is this second class ¥ which
provides a more direct translation of the proof in [2]. The first € we
describe now is somewhat different.

Let {a a4y, a3,.} be an infinite set. For each r=1,2,3,..., let
A =fay,...,q), and let ¢, = C(4,,6). Thus C(4,G) above is C,, here. We
claim that 4 = C,,+, and B = C,, satisfy Theorem 1, for all m > 1.

. ,9 .
To see this we first define M. Let k —""/ be in Cn+1- Then

M(f, ) = (s, where k =1 —=Y"*? [ + 1 in C,, is defined as follows. For
x €4, Ull,.... 0, FX =) if fF)€A,Uull,.. k), ff(X)=k+1 if
fG) =aps, and £ U+) =k+1. For x€ 4, u{l,...,]}, s'&x) =s(x), and
s'(0+1) =1. One can check that M does preserve composition. For the
identity map (e;, 1), I in Cn41, Where ¢ acts identically on/ and 1(x) =1 € G,
X € Ay U {1,..., 1}, we see that M((e;, 1)) = (41,1 IN Cp, SOM () =1 + 1.

®*,7)
Next we define . Let k ="

where k —*

! be in C,. Then P((h,r) = (&",r"),
") 1in Cp4y is defined by letting " (x) = h (x) and u” (x) = u (x)
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for xea, Uull,....1), and K" (apy) = aper, " @n4) =1€G. P clearly
preserves composition, and P (/) =/ for all /.

Finally, for each ! and any ge¢G and any j, 1<j<m, let
¢r.G.p =y, 1), or just (j,g), for short, where dy(x) =x for
x€{l,...,11 U 4,, dy(l +1) =a;, and lg)=1€G for xef1,..., 0} U 4,,
lyU+1) =g These ¢'s are indexed by the pairs (j,g). We Ilet
¢t = |4, |G| = m |G|, and for the choices above we verify I-IIL

Let k +1 =" 141 represent a subobject in C, [’,‘I}] Suppose first

that (1 +1) ¢ 4,,. Let = be a permutation on {1,...,.k+1} U A,, fixing all
@ € A, and such that «f takes / + 1 onto k + 1. Let u = (¢(/ + 1)), and let
(.5 = (£,5) Gx, 1,4, ©), where as above, 1,; maps {1,...,k} U 4,, onto 1 € G,
and k +1ontou. Then f =xfands' =1, 5. In particular, since (r, 1, x)
is an isomorphism in ¢, (its inverse is x~!, 1, «)), we see that (f,s) and

('.s') represent the same subobject of /+1. Now let k =Y *" ;| be

defined in C,,4, as follows. For x € 4, U (1,...,1}, we let ) =f &) if
S@#k+1,and ' (x) =apy if £ &) =k +1. We let S (@p41) = G4y For
x€dy UI,....0l, we let s"G)=s'(x), and s"(ayy) =1. Then

M, s") = (f,s). So the subobject represented by (f,s) is in
M (Cpny [,I(]) This is the case, then, for any (/,s) with f¢+1) ¢ 4,. On

the other hand, suppose f( +1) =-a;€4,. Let k+1 =Y i C, be
defined by () =f(x) and s'(x)=sGx) for x€(1,..., 0 U An. Then
(.9 =G,sC+D4(',s) and (,s) represents a subobject in
GosT+ 103G [ 4]+ This establishes I.

For II, we note that for x —¥** 1 in Cpy M(P((f,5))) is the morphism

k+1=Y" 141 in ¢, where S =fx) and s'(x)=sx) for
xelt,....0ud,,and f U+ 1D =k+1,s'U+1)=1. Then for cach jand ¢
we see that (j,g),(f,9) = (', s") G, ), establishing II.

To verify III, we consider (m + 1,1); in Cp4,. Then M ((m + 1, 1) is the
morphism 7+1 =Y/ 4+2 in Cn where 1Gx)=1 for all x in
(,...,1+23u4,ande' ) =xforxell,..., 1} Udy,ande' U+ 1) =1 +1,
eU+)=1+1. Then clearly
GG,y =€" DG, =Mn+1,1)(,g),. This establishes III and
completes the proof of Corollary 4.

The alternate choice for the class € to prove Corollary 4 is as follows.
For each m=0,1,2,..., let 4,=Adudl,...,m xG), and let
Cm=C(4,,6). Then Cj=cC. Let € be the class of all C,,. For each
m, Cpy 4y and C,, satisfy Theorem 1.

For k—*(f")l in Chu, we let M) =(",s"), where for
x €4, U{l,..., 1} welet

FG)=f(x) and s' (x) =5(x) if &) ea,vit,. .. k};

for f)=(m+1,0), welet £ (x) =k + Ls' G =gst);and fU+1) =k +1,
'@+ =1 For k=" in ¢, we define P((f,5) = (5" in Cyy, by
letting £ (x) = f(x), s'(x) =s(x) if x € An U {l,.. .0, and £ (m+1,g) =
m+1,8, s"m+1,8)~1. For ac4, and geG, as before, we let
¢1,G, 9 = @ar, 1). Then I, I and III can be verified, with ¢ = l4,,| |G].

Now we still do not have an exact translation of the proof in [2]. In
particular, we have taken no account of any action of G on 4. To handle
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this we consider a set 4 and a group G acting on 4, e —a% € 4 for g € G.
We consider the category C(4,G) and obtain from it the category C(4,G)
by identifying any two morphisms k —V-; and k —%-* ; for which
=g and s =ulx) if f&x)efl,..., k), and fG)IW =g(x)*®
otherwise. By considering G to act on ({1, ..., m} x G) by (i, 9)* = (i, gh) for
all » € G, we obtain the categories C,, = C(4,,,G). The categories C,,,, and
C, satisfy Theorem 1, where we take for M and P the functors determined
by the M and P for C,4 and C,, above by their action on classes of
identified morphisms. For the ¢’s we use classes of identified ¢; (o from
above. There are |4,,| of these, represented by the ¢, (;,p. Thus we let
t = |A,| here. Letting € be the class consisting of all C,,, we can apply
Proposition 1. This is the exact translation of the proof in [2].

REFERENCES

1. R. L. GRAHAM AND B. L. ROTHSCHILD, Rota’s geometric
analogue to Ramsey’s theorem, Proc. AMS Symp. in Pure
Mathematics XIX Combinatorics AMS Providence (1971), 101-104.

2. R. L. GRAHAM AND B. L. ROTHSCHILD, Ramsey’s Theorem
for n-parameter Sets, Trans. Amer. Math. Soc. 159 (1971), 257-292.

3. A. HALES AND R. I. JEWETT, Regularity and Positional games,
Trans. Amer. Math. Soc. 106 (1963), 222-229.

4. F. P. RAMSEY, On a problem of formal logic, Proc. London Math.
Soc. 2nd Ser. 30 (1930), 264-286.

5. B. L. ROTHSCHILD, A generalization of Ramsey’s theorem and a
conjecture of Rota, doctoral dissertation, Yale University, New
Haven, CT, 1967.

6. H. J. RYSER, “Combinatorial Mathematics,” Wiley, New York,
1963.

Reprinted from
Advances in Math. 8 (1972), 417-433

445



