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We introduce a class of optimization problems, called dynamic location problems, involving
the processing of requests that occur sequentially at the nodes of a graph G. This leads to the defini-
tion of a new parameter of graphs, called the window index WX(G), that measures how large a
“window” into the future is needed to solve every instance of the dynamic location problem on G
optimally on-line. We completely characterize this parameter: WX(G)=k if and only if G is a
weak retract of a product of complete graphs of size at most k. As a byproduct, we obtain two
(polynomially recognizable) structural characterizations of such graphs, extending a result of Bandelt,

1. Introduction

A wide range of optimization problems involve sequential decision-making
In response to an external (i.e., uncontrolled) sequence of events. In such a system,
the decisions do not affect the events themselves but the cost incurred for a chosen
decision sequence depends in some way on the external events. A decision-making
procedure can be viewed as an algorithm that takes as “input” the sequence of
external events and produces as “output” the sequence of decisions. Quite often,
these decisions must be produced ““on-line”, that is, each decision must be made
based on currently available information: the history of events that have already
occurred and incomplete knowledge of future events. A typical approach to such
problems is to make probabilistic assumptions about the future input and to eval-
uate decision strategies based on their expected cost. In the absence of a good stochas-
tic model for the input, an alternative approach for evaluating an on-line algorithm
is to look at the maximum deviation of its cost on any input sequence from the
optimal cost attainable (off-line) for that input sequence. This approach has been
taken by a number of researchers ([9], [8], [21], [44], [45]), particularly in the context
of data storage and retrieval. Of course the most desirable situation is for the on-line
algorithm to be optimal on every input sequence, but one expects this not to be the
case for most problems.

In this paper we introduce a simple and natural class of optimization prob-
lems, dynamic location problems, involving the processing of requests that occur
sequentially at the nodes of a graph. The above considerations lead us to define a
new parameter of a graph G, denoted by WX(G), and called the window index or
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windex of G, that measures how large a “window” into the future is needed to solve
every instance of the dynamic location problem on G optimally on-line. We obtain
a complete characterization of WX(G); our main result is that WX(G) is finite if
and only if G is a weak retract of a product of complete graphs. As a byproduct,
we obtain two (polynomially recognizable) structural characterizations of such
graphs, extending a theorem of Bandelt [4] on graph retracts (see also [16]).

2. The windex of a graph G

We consider the following simple model for the sequential processing of
requests to a system. The system is represented by a connected graph G=(V, E)
where the vertices ¥ represent ““locations”. The processing of each request requires
the use of the same indivisible resource. The state of the system is characterized
by a single vertex representing the current location of the resource. The state can
be changed (that is, the resource moved) from v to w at a cost dg(v, w) where dg
denotes the standard graph distance (i.e., the shortest path metric). Requests arrive
to the system at particular nodes and must be processed in the order of arrival.
The cost of processing a request at node v is dg(v, w) where w is the location of
the resource when the request is processed. A sequence of requests to the system
is represented simply as a sequence #,7,...7, of nodes. The cost of processing the
sequence rF,...r, depends on the sequence s,5,...5, of states in which the re-
source resides when they are processed, and is equal to the sum of the cost of proc-
essing each request and the cost moving the resource between states, i.e.,

n

2 (de (s, r)+di(5i-1, 59))

i=1

where s, is the (given) initial state of the system.

The dynamic location problem (DLP) for the graph G is to find the optimal
sequence of states (minimizing the total cost) for a given request sequence. Given
a particular finite request sequence, an optimal state sequence can be computed
by standard dynamic programming techniques ([42]). This is an ““off-line” computa-
tion, i.e., the choice of each state may depend on the entire request sequence. Sup-
pose, however, that we are presented with the requests one at a time in order and
we would like to be able to construct our state sequence on-line, i.e., to select each
state s; “soon after” finding out request r;. More precisely we say that an algorithm
for the DLP on G works within window k if for each i, the choice for state s; depends
only on s, and r; for j<i+k. For each graph we ask: what is the smallest & (if any)
such that the DLP has an optimal algorithm that works within window k£? We call
this parameter the window index, or windex of G, and denote it by WX(G); if no
such k exists we say WX (G)=-o-.

It is not immediately apparent that WX(G) is a nontrivial parameter, i.e.,
that WX(G) is not constant, or even that it is ever finite. Consideration of some
examples, however, suggested that the parameter was interesting. Our early results
(which will also follow from our main results) were:

Proposition 2.1. WX(G)=2 for any connected graph on at least two vertices.
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Proposition 2.2. The following classes of graphs have windex 2:

a) trees;
b) hypercubes;
¢) planar grids.

Proposition 2.3. The complete graph K, has windex n.
Proposition 2.4 The following graphs have windex o:

a) a cycle of 5 vertices;
b) K, with an edge deleted.

For the classes of graphs listed in Proposition 2.2 the following window 2
algorithm turns out to be optimal: Having chosen state s;_,, let s; be a vertex that
minimizes the sum of the distances from s; to the three vertices s,_;, r; and Fiyq
The fact that this algorithm is optimal for these graphs stems from the following
property that they share.

Unique Steiner Triple Property (USTP): For any three (not necessarily distinct) ver-
tices a, b, c there is a unique vertex v that minimizes the sum dg(a, v)+dg(b, v)+
+dG (C, U).

Hence in the preceding window 2 algorithm the vertex s; is uniquely deter-
mined from s;_,, r; and r;,.

In fact, as we showed in [12], this property characterizes graphs with windex 2:

Theorem 2.5. WX(G)=2 if and only if G satisfies USTP.

Characterizing graphs of windex greater than 2 requires another approach.
The first step is the observation that windex behaves nicely under the operation of
O -product, defined as follows.

If G;=(W,, E), 1=i=r, are graphs then the O -product G=G,0G,0...0G,
is the graph on vertex set W, X W, X ... X W, with edges {(v;, v,, ..., 1,), (W;, Was s W,))
if for some index j, (v;, w;)€E; and for i#j, v;=w;.

Lemma 2.6. If G, G.,, ..., G, are graphs then
WX(G,0G,3...0G,) = max {WX(G,), WX(G,), ..., WX(G,)}.

The second step was to understand the relationship of WX(G) to WX\ (H)
if H is a subgraph of G. It is natural to hope that if H is an induced subgraph of G
then WX(H)=WX(G), but there are simple counterexamples; indeed WX (G) may
be finite while WX(H) is infinite. Nevertheless, a weaker result is true:

Lemma 2.7. If H is a weak retract of G (see section 3 for the definition) then WX (H)=
=WX(G).

Proposition 2.3, and Lemmas 2.6 and 2.7 provide a means for constructing
a large class of graphs with finite windex: if G is a retract of a product of cliques
then G has finite windex.

Now the following result of Hans Bandelt, brought to our attention by
Peter Winkler, implies that this class contains all windex 2 graphs:
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Theorem 2.8 [B] G has the USTP if and only if G is a retract of a hypercube (i.e.,
a O-product of complete graphs on two vertices).

In fact, as we will show, this class contains all graphs of finite windex:

Theorem 2.9. The following two conditions on a graph are equivalent:

(i) G is a weak retract of a product of cliques.

(i) WX(G) is finite.
Furthermore, if WX(G) is finite then WX(G)=0(G), the cardinality of the largest
clique in G.

Along the way, we will prove two other equivalent characterizations of these
graphs, given in Theorem 4.1, including a generalization of Theorem 2.8.

3. Notation and Other Preliminaries
A) Graphs

For a graph G, V(G) and E(G) denote the vertex and edge sets, respectively.
Vertices of G are usually denoted by letters a, b, c, d, e, r, s. We usually use u, v,
w, x, ¥, z to denote variables that range over vertices of G. An edge between a and
b is denoted {a, b). For each a€V(G), the neighborhood of a, Ng(a), is the set
{veV|{a, v)€ E(G)}. As with all functions defined with respect to G we will write
simply N(a) if there is no ambiguity. The distance between vertices a and b, dg(a, b)
is the number of edges in the shortest path joining them. If A4, BEV(G) then
d(A, B)=min d(u, v) over all uc A and v€B. SPg(a, b) is the set of all vertices
(including a and b) that lie on some shortest path between a and b. Clearly c€ SP(a, b)
if and only if d(a, ¢)+d(c, b)=d(a, b).

A median of a set of three vertices a, b, ¢ in G has been defined elsewhere
as a vertex x that lies on some shortest path between any two of them, i.e., such that

3.1 d(a, b)+d(a, c)+d(b, c) = 2(d(a, x)+d(b, x)+d(c, x)).

Note that under this definition a, b, ¢ cannot have a median if the sum of
their distances is odd. For our purposes it will be convenient to use a modified
definition and call x a median if

3.2) d(a,b)+d(a, c)+d(b, )+ 1 = 2(d(a, x)+d(b, x)+d(c, x)).

and to say x is an exact median if (3.1) holds. (Note that if G is bipartite any median
is exact.) If the median x4 {a, b, c}, it is an external median.

A triple of vertices a, b and c is a spike if d(a, ¢)=d(b, ¢)=2 and either

(i) {a,b)cE

or

(ii) there is a vertex e€ N(@)(\N(b) such that d(e, c)=d(a, c)+1.

We say the spike is type 1 or type 2 depending on which of these conditions it
satisfies. We have
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Proposition 3.1. If a, b, ¢ is a spike with d(a, c)=d(b, c)=m and x is an external
median then x€ N(a)\N(b) and d(x, c)=m—1.

If WSV(G) then Gy=(W, E,) denotes the subgraph induced on G con-
taining all edges of G having both endpoints in . An induced subgraph Gy is a
(weak) retract of G (or W is a retract of V) if there exists a function [ V-w
such that

(i) f(v)=v for each veW

(ii) if (v, w)€ E(G) then either f(v)=f(w) or {f(v), f(W))€ E(G).

The map f'is called a (weak) retraction map. A retraction map f is strong (and Gy,
is a strong retract) if in condition (i1) we do not allow f(v)=f(w).

Two important properties of retracts are the following.

Proposition 3.2. If f and g are retraction maps (resp. strong retraction maps) then so
is their composition fog.

Proposition 3.3, If f is a retraction map and v, wCV then d(v, w)=d( f(v), f(w))

(For background on retracts see [27], [28].)

An isometric embedding of a graph H into a graph G is a one-to-one func-
tion O: V(H)-V(G) such that for any v, weV (H), dy(v, w)=dg (O (v), @ (w)).
In particular ©® maps edges of H to edges of G and non-cdges of H to non-edges
of G. If H embeds isometrically into G we write H—»G.

Proposition 3.4. If G,=(W,, E), 1=i=r, are graphs, then for any
@1, ), Wy, ..uw,) in G = G,06,0...06,,

dG((vla "'5vr)a (wly ey r)) - é; dG(vh wi)'

Elements of a product W=W,X...XW, are denoted with a line over them,
v=(v;, vs, ..., v,), and are often called vectors. For any set V of vectors, B, denotes
the graph on vertex set ¥ with (5, w)CE(By,) if & and w disagree in exactly one
position. Such graphs are called vector graphs. If V is constant on some coordinate
then deleting that coordinate does not change By ; hence, in this case, every vector
graph can be represented by a set of vectors having no constant coordinate, which
we call an irreducible set.

Note that if ¥ is equal to a product WM XW,X...XW, of sets then By is
isomorphic to the [J-product of complete graphs on W, W,, ..., W,. In general,
the product completion of a set of vectors ¥V is the smallest set product
W=W,XW,X...XW, containing V. Obviously, for each j, W, ={althere is a eV
with v;=a}, and B, is an induced subgraph of By, . Note that d(7, w) is always
at least the number of coordinates in which % and w differ, with equality holding
for all o, w if and only if B, is an isometric subgraph of By,.

If I={i,, iy, ...,i;}E{1, ..., 7} the projection of o=(vy, ..., v,) onto I, de-
noted proj;(5), is the vector (03, Vs .05 ;) in Wy XWX ... XW,.

For o, w, X€ W we define the imprint of & and % on X, imp (v, w:X) to be
the vector Z defined by z;=v; if v,;=w, and z;=x; otherwise. A subset VW
is imprint closed if o, w, x€V implies imp(5, w:x)€V. If V is an imprint closed
subset of W we also say that By is an imprint closed subgraph of By, .
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B) The dynamic location problem

A particular instance of the dynamic location problem for a graph G=(V, E)
is represented by a sequence 4,4, ...a, of vertices where g, is the initial state and
a;...q, are the requests. We call such a sequence a DLP sequence. The cost of a
response sequence b,...b, to a,a,...qa, is defined to be

k
C(by...by; aya,...4) = d(by, a)+d(by, a;)+ %(d(bi—la b)+d(b;, a)).

The cost of the optimal response sequence is
3.3) OPT(aya,...a) = min C(v;...%; dya, ... 4.
vl...vk
We will often denote a sequence of vertices by ¢ or a. The concatenation of
two sequences ¢ and o is denoted go.

It is easy to see that we can always take v,=gq, in the minimum above.
Additional easy observations are:

Proposition 3.5.

(i) OPT(ap)=0;
(ii) OPT(aya,)=d(a,, a,);
(iii) OPT(ayaa,)= min [d(v, ap) +d(v, a)+d(v, a)];

(iv) For any sequences gy, Q25 .-+ 0x» OPT(0,05...0)=OPT(9,) +OPT(0,)+
+...4+O0PT(gy).

From (iii) and (3.2) we have:

Proposition 3.6. OPT(aOalaz)z[% (d(ay, a)+d(ay, a)+d(ay, az))] with equality if
and only if a,, a,, a, have a median.

By optimizing (3.3) first over some v; we get:
Proposition 3.7. If ay, ay, ..., a€V and 1=j=k then

OPT(aya,...a,) = rvn€i9 d(v, a)+OPT(aya,...a;_yv)+OPT(va;,,...a).

In particular,
OPT(aya,...a,) = rvnely {d(ay, v)+d(a;, v)+OPT (vaya,...a,)}.

If we use a window k algorithm to construct a state sequence §S,...5, in
response to a DLP sequence aya,4a,...a,,,; then the first state s, depends only on
a4ya, ...a,. Hence, for the algorithm to be optimal that choice of 5, must begin an
optimal sequence for any value of a,,,. Define, for ¢=a,a,...q;,, the function

Jo(u,v) = d(u, a))+d(u, a,) +OPT (u a,... . v),

which is the minimum cost of a state sequence for aya;...a,v given that s,=u.
Note that for any v,

OPT (gv) = rnuinfe(u, v).
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The foregoing discussion implies :

Lemma 3.8. If WX (G)=k then for any sequence @=ay,a,...q, there exists a vertex
b such that for each veV

Jo(b, v) = min f,(u, v) = OPT (gv).

This simple lemma is the basis for all of our lower bounds on WX. (@),

4, The Main Theorem

We will prove the following refinement of Theorem 2.9.

Theorem 4.1. The following conditions on a connected graph G=(V,E) are
equivalent:

(P1) G has finite windex:
(P2) G satisfies:
(@ If (u,v)4E then N(w)NN(v) is either empty, a single vertex or
two independent vertices;
(b) Every spike has an external median;:
(P3) G is isomorphic to an imprint closed subgraph of a product of cliques;
(P4) G is isomorphic to a weak retract of a product of cligues.

Furthermore, when these conditions hold, WX (G)=0(G), the maximum
clique size of G.

The proof of Theorem 4.1 is organized as follows: (P4)—~(P1) in Section 5,
(P1)~(P2) in Section 6, (P2)~(P3) in Section 7, (P3)—~(P4) in Section 8, and
WX(G)=6(G) or <« in Section 9.

5. The Proof that (P4) —~ (P1)

It is enough to prove Proposition 2.3 and Lemmas 2.6 and 2.7.

Proof of Proposition 2.3. We first show WX (K)=n—1. Let V={ay,a,,..., ay_4}
and let 9=aya,...q,_,.

Claim: f,(u, a))=n—1 with equality only if u=a,,
Jous a)=n—1 with equality only if u=aqa,.

Then Lemma 3.8 implies that WX(K,)>n—1.
To prove the claim we first note:

Lemma 5.1. If by, ..., b, are distinct then OPT (xby...b)=k—1, with equality if
and only if x=b; for some 1=i=k.

Proof. (By induction on k.) If k=1 then the result is trivial. If k=1, then by
Proposition 3.7 and the induction hypothesis,

(5.1) OPT(xb,...b) = min d(x, y)+d(by, ) +OPT(yb,...b,) =

= myin d(x, y)+d(by, y)+k—2
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with equality if and only if y€{b,, ..., b;}. Now for y€{b,, ..., b} the right hand
side of (5.1) is at least

dx,y)+k—1=k-1

with equality if and only if x=y; hence x¢{b,,...,b}. For yéb,,...,b,, the
right hand side of (5.1) is at least

d(x, Y)+d(by, y)+k—1= k-1
with equality only if x=b,=y.
Now by Proposition 3.7,
Jo(u, ay) = d(u, a))+d(u, a))+OPT (u a,...a,a,).

If usa, then by Lemma 5.1 this is at least n+1. On the other hand if u=a,
then Lemma 5.1 1mphes that f,(a,, @y)=n. This establishes the first part of the
claim. The second part is proved analogously.

Next we show WX(K,)=n. Consider the following window n algorithm:
given the current state s; and the next »n requests 7;,,, ..., 7;,,, if the first vertex
repeated in the sequence s§; #;y,...F;, is ;4 then set s;,,=r;,,; otherwise set
Si+1=95;. We claim this is optimal. Let s, be an initial state and r,...r, be a request
sequence, and let s,...s, be the sequence given by the algorithm. We show, by
induction on j that there exists an opt1ma1 Sequence ad,...a, for s, r,...r, so that

a;=s; for i=j. The basis case j=0 is vacuous. Now let j=1 and suppose a,=s; for
1<] 1. If a;=s; we’re done, so assume s;7a,. The terms of C(syry...r,; a;.. -a)
involving a; are d(a -1 a;)+d(a;, r )—{—d(aj, aJH) If a;#a;_, or r; then this is
at least 2, so we can change a;to s Wlthout increasing the cost (smce 55 e1ther equals
;1 OT ;). So we can assume a;=s;_; OF a;=¥r;

Case i.a;=a;_,(=s;_,). Thens;=r;so the first repeated vertexin s;_y7;r Fiin—1
is r;; assume thxs occurs at rg. Let h be the smallest index exceedmg ] such that
a,7s;_y. Then the cost of all terms involving a;a Ominh—1,5) Can only decrease
if we change them all from s;_, to r;.

Caseii. a;=r;. Then s;=a;_,, so the first vertex repeated is not r;. Let
r, be the second occurrence of the first repeated vertex, and let h be the
smallest index exceeding j such that a,r;. Then the cost of all terms involving
Ajs jyys s Aminn—1,5) Can only decrease if we change them all from r; to s;_,;

Proof of Lemma 2.6. To prove
WX(G,0G,0...0Gg) = max (WX(Gy)), ..., WX(Gx)),

it is enough to prove the result for the product of two graphs; the general case follows
by induction. So, let G=(, E) and H=(W, F). If (v, wy)(vy, wy)...(v,, w,) is a
DLP sequence in G {1 H then the cost of the state sequence (xy, y1)(x5, ¥a)... (X¢, ¥p)
in response is simply Cg(Vp0;... 03 Xy ... X} +Cr(Wowy ... w;; ¥;...y,) by the additivity
of distances in GO H. Hence, a response sequence is optimal if and only if both
projections are optimal. Hence if G and H both have window k optimal algorithms
then so does GO H.
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Proof of Lemma 2.7. Let H=(W, F) be a retract of G =V, E) with retraction
map f and let W(G)=k. Let g=aya,...a, be a DLP sequence for H. Then o
can be treated as a DLP sequence for G since H is an induced subgraph of G. Let
1b...b, be anoptimal state sequence in G for 4ya,...a,. Then we claim
f(B)f(by)...f(b,) is an optimal state sequence in H for 4,4, ...a,. This follows
from the following sequence of inequalities :

OPTy(ayay...a,) = OPT4(aya,...a,) = Ce(ayay... a,; b,...b,) =
= Cu(fla) f(@)...f(a,); f(By)...f(b,)) =
= CH(aOal"'an;f(bl)"'f(bn))'

The first inequality holds since H is an induced subgraph of G. The second inequality
holds since dg(v, w)=dy( f(v), f(w)) by the property of retracts. The final equality
follows from the fact that £ is the identity on W.

Hence, if b,b,...b, is produced by a window k algorithm then so is

Jb)fby)...1 ). 1

6. Proof that (P1) - (P2)

Let G have finite windex. We will present four reductions that together
immediately imply that G satisfies (P2). In each reduction, the finiteness of WX (@)
is shown to imply some local restriction on G. The proof of each reduction con-
sists of producing a vertex sequence g of length greater than WX(G) and showing
that if G doesn’t conform to the restriction then the conclusion of Lemma 3.8 is
contradicted.

Reduction 1. Let a, b be nonadjacent vertices of G. Then N(a)NN(b) is an inde-
pendent set, i.e., G does not contain an induced subgraph on four vertices with exactly
five edges.

Proof. Suppose ¢, dc N(a)\N(b) and {(c, d)¢ E(G). Choose Jj such that WX (G)<2j
and define ¢ =cd(ab)’.

Claim. f,(u, c)=0PT(gc) only when u=c,
and
Jo(u, d)=OPT(gd) only when u=d,

which would contradict Lemma 3.8, and establish the reduction. We will prove
the first claim; the second is completely analogous.

Lemma 6.1. For j=1:
(i) OPT(x(abyc)=2j if xc{a,c)},
(i) OPT(x(ab) c)>2; if x¢{a, c}.
First of all for any x, Lemma 3.5 (iv) gives

OPT(x(ab)c) = jd(a, b) = 2j.
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Furthermore
OPT(x(ab) ¢) = C(x c¥; x(abyc) = d(x, @)+ d(x, ¢)+d(c, b)) +2(j—1) =

=2j if x€{a,c},

proving (i).
We prove (ii) by induction on j. If j=1 then

OPT(xabc) = 1;1111'};] d(x, v))+d(a,b)+d(v,, ¢) = 2+d(x,v,)+d(v,, c).
So assume v, =x and v,=c since otherwise we get a cost of at least 3. Then
OPT(xabc) = d(x, a)+d(x, c)+d(c, b) = 2
if x¢{a, c}. For the induction step j=1 we have, by Proposition 3.7,
OPT(x(ab)¢) = myin d(b, y)+OPT (xay)+OPT(y(aby'c).

By induction the third term is =2j—2 if y¢{a, ¢}, and the first two terms
sum to at least d(a,b)=2. So assume y=a or c. If y=c then d(b,c)+
+OPT(xac)=2 if x¢{a,c}. If y=a then d(b,a)+OPT(xaa)=2+d(x, a)=2
if x#a.

Now
fou, ©) = d(u, ¢)+d(u, d)+OPT (u(ab) c).

If u¢{a,c} then Lemma 6.1 implies f,(u, c)=2j+2. For uc{a, c}, Lemma6.1
implies
fo(u, ©) = d(u, ¢)+d(u, d)+2j

so f,(u, ¢) has a unique minimum at u=c.
Reduction 2. Let a, b be nonadjacent vertices of G. Then |N(a)(\N(b)|=2.

Proof. Suppose c, d, ec N(a)(\N(b). By reduction 1, {c,d, e} is an independent
set. Choose j such that WX(G)<3j and define ¢=(cde) .

Claim. f,(u,a)=OPT(ga) only when u=a, and f,(u,b)=OPT(gb) only when
u =

which contradicts Lemma 3.8 and establishes the reduction. We will prove the first
part of the claim; the second follows by symmetry.
First,
OPT (ga) = 3j

is shown by using the state sequence a1,
We show f,(u, a)>3j for uza by induction on j. For j=1,

folu, @) = d(c, u)+d(d, u)+OPT (uea).
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If u=c, d or e then this is at least 4. So assume u#c, d, e. Then the first two terms
are each at least 1 and the last term is at least 2 unless u—a.
For the induction step j>1 we have by Proposition 3.7,

Jo(u, @) = d(c, u)+d(d, u) +OPT (ue(cde)) ~'a) =
= min d(c, u)+d(d, u)+d(u, x)+d(x, €)+OPT (x(cde)’~a).
Now if x>ta then the last term is at least 3j—2 by the induction hypothesis and

the first four terms are at least OPT(cde)=3, giving a cost of at least 3j+1. So
assume x=a, then the last term is 3j—1 and the first four terms are

d(c, u)+d(d, u)+d(u, a)+d(a, e).

If u=c or d then this sum is 4 and otherwise it is at least 3+d(u, a) and hence
the total cost is at 3j+1 if us=a.

Reduction 3. Suppose a, b, c, eV (G) and
(1) d(a, c)=d(b, c)=m,
(ii) d(e, c)=m+1,
(ii1) e is adjacent to both a and b and d(a, b)=2;
ie., {a,b,c} is a type 2 spike. Then a, b, ¢ have a median in G.

Proof. Suppose a, b, ¢ have no median in G. Let ¢=aec(bca)! where j is chosen so
that 3j=> WX (G).

Claim. f,(u, a)=OPT(ga) only when u=a,

Jo(u, b)=0PT(gb) only when u=e,
which would contradict Lemma 3.8, and establish the reduction.

Note first, by Proposition 3.6 and the assumption that b,c,a have no
median

OPT(bca) = OPT (cab) = mxin d(c, x)+d(a, x)+d(b, x) =
=m+2
(taking x=a).
Now using the response sequence a*+3 on ga gives
OPI(ga) = (j+1)(m+2)—1.
On the other hand, using Proposition 3.7,
Se(u, @) = d(a, u)+d(u, ©)+OPT (uc(bcay’) =
= d(a, u)+d(u, e)+d(u, ¢)+jOPT (bca) =
=d(a,u)+d(c, e)+j(m+2) =
= d(a, 0)+(j+1)(m+2)—1,

80 fo(u, a) is minimized precisely when u=a.
Next, using the response sequence eb® on gb gives

OPT(gb) = (j+1)(m+2).
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On the other hand, using Proposition 3.7,
fo(u, b) = d(a, u)+d(u, ) +OPT (uc(bca)’ b) =
= d(a, u)+d(u, e)+OPT (ucb)+j(m+2) =
= d(u, e)+O0PT (ach)+j(m+2) =
= d(u, e)+(j+1)(m+2)
so f,(u, b) is minimized uniquely when u=e.

Reduction 4. Suppose a, b, c is a type 1 spike with d(a, ¢)=d(b,c)=m. Then a, b, c
have an external median.

Proof. Let g=ach(ca)’ where 2j=WX(G).
Claim. f,(u, c)=0PT(¢c) implies ucSP(c, a)\SP(c,b)
and

fo(u, a)=0PT(ea) implies u is a median of a, b, c.

Note that g and b are both medians but neither is in SP(c, @)\ SP(c, b)
and c€SP(c,a@)NSP(c,b) but is not a median, so by Lemma 3.8, the claim
implies that g, b, ¢ must have an external median.

Proof of claim. If u is in SP(c, a)(\SP(c, b) then evaluating the cost of the re-
sponse sequence uc**+? for ugc gives

S(u, )= (j+2)m for ucSP(c,a)(1SP(c, b).
On the other hand,
fo(u, ©) = d(u, a)+d(u, c)+OPT (ubc(acy’) =
= d(u, a)-+d(u, c)+OPT (u, b, c)+jm.

Now d(u, @) +d(u, c)=m with equality only if uc SP(c, a) and OPT(u, b, c)=m
with equality only if u€SP(c, b) so f,(u, c)=(j+2)m if and only if u€ SP(c, a)
MNSP(c, b), establishing the first part of the claim.

For the second part, we evaluate the cost of the response a®*2 to ga to get

fi@, @) = (GHDm+1,
On the other hand,

1o(u, @) = d(u, a)+d(u, ¢)+OPT (ub(ca) a) =
= d(u, a)+d(u, ¢)+d(u, b)+jd(c, a) =
= OPT(acb)+jm =
=(j+)m+1.

Note that if u is not a median of a,b, ¢ then the second inequality is strict, so
folt, @)=(j+1)m+1 establishing the claim. [
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7. The Proof of (P2) ~(P3)

We first prove:

Theorem 7.1. If G satisfies (P2) then G can be embedded isometrically in a product
of cligues.

A substantial theory of isometric embeddings has been developed by Djo-
kovic [15], Firsov [18] and Graham and Winkler [24] (see [19] for a survey). We will
need the following result from this theory.

Let G be any graph and define a binary relation R on the edges of G by:

(u, 0) R, ¢"y < d(u, ') +d(v, V') # d(u, v')+ d(v, w).

Recall that if FSE(G)then G/F denotes the graph obtained by contracting
the edges of F. More precisely each connected component of F is a vertex of G/F
with two components adjacent if some edge of E— F joins them.

Theorem 7.2 ([24]). Let E,, ..., E, be the partition of E into its connected R-com-
ponents. Then

G-~ GNE-E)OGIE—E)O... OGHE—E)).

Hence to show that G embeds isometrically into a product of cliques it is
enough to show that G/(E—E;) is a clique for each 7. Our aim is to construct the
classes E,.

Throughout this section G denotes a graph that satisfies (P2).

Let Q denote the set of all vertex subsets that induce maximal complete sub-
graphs in G, for 2¢Q, E, denotes the set of edges induced on 4.

Lemma 7.3. Each edge of G belongs to a unique maximal complete subgraph, hence
{E,;|2€Q} is a partition of the edge set.

Proof. Let (a, b)CE. If ¢, de N(a)\N(b) then by (P2a), (¢, d)€E. Thus, {a, b}U
UN@NN (b)) induces a complete subgraph in G and it clearly contains any other
set A that contains {4, b} and induces a complete subgraph in G.

For each (g, b)cE we denote by 9(a, b) the unique member of Q con-
taining a and b. By the above proof:

(1.1) 2(a, b) = {a, BYU(N(@)" N(b)).

Lemma 7.4. Let 2¢Q. Then for each acV thereisa unique b¢ 2 such that d(a, b)=
=d(a, 2).

Proof. Suppose there were two vertices b, c€ 2 such that d(a, b)=d(a, c)=d(a, 2).
Then a, b, ¢ form a type 1 spike and so by (P2b), have a median e. Then e€ N(B)N
M N(c) and hence, by (7.1), e€2(b, c)=2. Then d(a, e)=d(a, b)—1=d(a, 2)—1,
a contradiction.

We denote by a,(a) the unique vertex & in 2 such that d(a, b)y=d(a, 2).
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Lemma 7.5. Let 2, 2°¢Q. Then exactly one of the following holds:

() 12|=12"| and the elements of 2 and 2’ can be labelled {a,, ...,a,} and
{b1> ..., b} such that

E

d(2,2) ifi=j
d(a,, b;) = {d(,@, 2)+1 if i j}

(ii) There are unique vertices a€9, b€ 2’ so that d(a, b)=d(2, 2’), and for
V€D —b, wel—a,

d(a,v) = d(w,b) = d(2, 2)+1
and
dw,v) = d(2, 2)-+2.

Proof. Let m=d(2,2) and let AS2 be the set of vertices v€2 such that
d(v, 2)=d(2, 2'). Define A’S2’ analogously. Then o, maps 4" to 4 and a,,
maps A to A” and these maps must be inverses. So if 4=2 and A"=2" then (i)
holds. Otherwise, suppose b€2 —A’. Then d(b, 2)=m+1=d(b, v) for any vEA.
By Lemma 7.4, A must consist of one element a. Similarly A" consists of one cle-
ment b. For v€2'—b, we2—a, d(a,v)=d(w, b)=d(2,2)+1 and d(v,w)=
=d(2, 2)+2 by Lemma 7.4.

We now define a relation on Q: 2|2’ if 2 and 2’ satisfy conclusion (i) of
Lemma 7.5. Clearly 2|2 if and only if 2’|2. We will prove

Lemma 7.6. 2|2’ and 212" implies 2|2”, and hence | is an equivalence relation on Q.
To prove this we need two preliminary observations.

Lemma 7.7 If 2, 2°€Q and there exist a,, a,c2 such that d(a,, 2)=d(a,, 2)=
=d(2,2) then 9|2’

Proof. The hypothesis violates condition (ii) of Lemma 7.5; hence condition (i)
holds, i.e., 2|2’.

Lemma 7.8, Let 2, 2,€Q with d(2y, 2,)=m and 24|2,. Then there exist
D1y iy 21€0 such that 2)\2;., with d(2;, 2;41)=1 for 0=i=m-—1.

Proof. We proceed by induction on m; for m=1 the result is trivial. Let 2=
={a,...,a} and 2,={b;,...,b,} with d(a;, b;)=m if and onmly if i=j. Let
¢, be a first element along a shortest path from b, to a;. Then d(c,, b))=1=d(c;, 2,)
and d(cy, a))=m—1=d(c;, 2,) and, by Lemma 7.4, if j=1, then d(b;, c;)=2
and d(a;, c;)=m. Then {c, a,, b,} form a (type 2) spike and hence by (P2b)
have a median ¢, N(b,)(\N(c,) with d(c,, ap)=m—1. Let 2,,_;=2(c;, ¢;). Then
b;49,_, for j=>1 since d(c;, b)>1 and b,§2,_, since {b,, c;} SN(b)NN(cy)
and (P2a) imply (b,,cs)4 E. Hence 2,,_,N2,=0 so d(Z2n_1, 2m)=d(c;, b)) =
=d(cy, by)=1. Thus by Lemma 7.5, 2,,_,|2,, and so 2,,_,={c;, ¢3, ..., ¢,} with
d(b;, c;)=1 if and only if i=j. Now d(2y, 2,_)=m—1 since d(2y, In)=m
and so d(2y, 2p_1)=m—1=d(c;, a))=d(c,, a,). Hence 2|2,,_, by Lemma 7.7
and we can apply the induction hypothesis to complete the proof.

Proof of Lemma 7.6. Assume 2|2” does not hold; we will derive a contradiction.
Let m=d(2, 2"). By Lemma 7.8, there is a sequence 2 =29,, 9y, ..., 2,=2 such
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that 22;,, and d(2;, 2;,,)=1. Letj be the largest index such that 2;|2”. By
assumption j<m. Then 2;,,/2” does not hold. Let p=d(2;,2"). Let 2;,,=
={a,...,a)}), 2;={b;,...,b,} and 2”={cy, ..., ¢,} labelled so that (g, b)cE
and d(b;, c;)=p for 1=i=k. We distinguish the three cases d(2;441, 2")=p—1,
pand p+1.
Casei. d(2;.,,2")=p+1. Then d(a;, c)=d(2;,1,2") for all i and so 2;1112”
by Lemma 7.7.
Caseii. d(2;,,, 2")=p—1. Then d(a;, c,)=p—1 for some ;€ 2511, cx€2”. Then
d(b;, c,)=p, soi=h. Assume i=1; by Lemma 7.7 it is enough to show d(ay, cy)=
=p—1. Now d(ay, c;)=d(by, c;))=p and d(b,, c;)=p-+1 with b, N(a,)N\N(bs);
hence {a;, by, ¢,} is a (type 2) spike and (P2b) implies there exists veEN. (a)NN(b,)
with d(v, c;)=p—1. Then by, a,, v N(a,)\N(b,) so (P2a) implies v=a, and
d(ay, c;)=p—1, as required.
Caseiii. d(2;,,, 2")=p; without loss of generality d(a,, 2”)=p.
Subcase a. d(a,, ¢,)=p. If d(a,, 2”)=p then Lemma 7.7 implies 2;:112" so we
can assume d(a,, ¢;)=d(a, ¢;)=p+1. Then {a,, c;, ¢} is a (type 1) spike and
(P2a) implies there is a vertex e€N(c)\N(c,) with d(ay, e)=p. But then
ec2(cy, ¢;)=2" and d(a,, 2”)=p and again Lemma 7.7 implies 2;.42".
Subcase b. d(a,, c;)=p for some i>1. Then {a,, b;, ¢;} is a spike since b,€ N(a,)N
MN(b) and d(b;, ¢)=p+1, so by (P2b) there is a vertex eEN(a))N\N(b;) with
d(e,c)=p. Then by, a;,eEN(a)\N(b;), so by (P2a) e=a;. Then p—1=
=d(a;, 2")=d(2;11, 2”) contradicting the case assumption. [

Therefore, | is an equivalence relation; let [2] denote the equivalence class

of 2, and let Epy denote () E,. Then the Ep, partition the edges.
LA3T)]

Lemma 7.9. The R-components of E are the seis Eyy.
This is an immediate consequence of the next three lemmas.

Lemma 7.10, The edges of any clique are in the same R-component, hence E, is
contained in an R-component for each 2¢Q.

Proof. For any u, v, we2, (u, v)R{u, w).
Lemma 7.11. If 2|2’ then E, and E, are in the same R-component.

Proof. If a,,a,€ 2" with by=0,(a,) and b,=a,(a,) then by a property of |,
d(ay, by)+d(ay, by)<d(ay, by)+d(ay, b;) and so (a1, az)R{(by, by).

Lemma 7.12. If e€E,, ¢'€E, and eRe’, then 3|2’.

Proof. If 2|2” does not hold, then the conditions of Lemma 7.5 (ii) hold, which
imply that d(v, v")+d(w, w)=d(v, w)+d(w,v’) for all v,wc2 and v, wc2.

In light of Lemma 7.9, Theorem 7.1 will follow if we show G/(E—E;,;) is a
clique for each class [2].

Lemma 7.13. If 2|2° and ac2, then there is a path from a to o, (a) consisting
only of edges in E—Eg,.
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Proof. Let d(2,2)=m and let 2=32,, 2,, ..., 9,=2" be the sequence given by
Lemma 7.8. Then the sequence ay=aq, a,, ..., a,=a,(a) defined by a;=0,(a;_1)
is a path from a to oy (a). Moreover 2(a;_,, a;)¢[2] since 2,€[2] and the members
of [2] are disjoint. Hence the path lies in E— Egy.

Finally, let ¥;, ¥, ..., ¥, be the partition of ¥ into the connected components
of G'=(V, E—Epy). Then in G/(E—E,), each V; contracts to a vertex. Hence
it is enough to show that any two of them have an edge of Ej,; joining them. Since
G is connected, each ¥; contains a vertex of some member of [2], but then by Lemma
7.13, V; intersects every member of [2] and thus any two of them have an edge of
E; 4y between them. ||

Having established Theorem 7.1, we can now assume that G is an isometric
subgraph of By where W=W,XW,X...XW,. So, let G=By with VSW. We
want to show that ¥ is imprint closed. Let &, b, ¢€¥V; we want to show that
imp(a,b:e)eV. Let IS{l1,2,...,r} be the set of indices for which a;b;. We
proceed by induction on |I|. We first write I=I, I\ JI, where I, is the set of
indices for which a;=c¢;, I, is the set of indices for which b;=c; and I,=I—
—~(I,UL). Note thatif I=I, then a=imp(a, b:¢) andif I=I, then b=imp(a,b:%).

If |I]=1, we neced only consider the case I=I,. Then d(a, ¢)=d(b, c)
and so (&, b, ¢) is a spike. The only median besides @ and b is imp(a, b:¢) which
is in V by (P2a).

If |I|=2, let I={i,j}. Since By is an isometric subgraph, @ and b have a
common neighbor d in ¥ with d;=a; and d;=b;. Let &’ =imp(a,d:c) and b'=
=imp(b,d:¢). By the previous case a’,b’cV. If icI, then @’ =imp(a, b:¢) and if
J€I, then b’=imp(a, b:¢). Otherwise@’, b’ and ¢ form a type 2 spike with d€ N(@’)N
NN(b) and d(¢,d)=d(c,a’)+1. Hence imp(a, b:¢)=imp(a,b’: &)V by (P2a).

Finally, if [I|>2 then let d be the first vertex on a shortest path from a to
b, and & be the first vertex on same shortest path from b to a. Let @’ =imp(a, &:¢)
and b’=imp(b,d:¢). Then by induction &’,b’cV. Furthermore, imp(a,b:&)=
=imp(@’,b’: ¢). But d(@,b’)=2 so by induction, this is in V. ||

8. Proof of (P3) - (P4)

Let ¥ be an imprint-closed subset of W=W,XW,X...XW, such that By
is connected (we may assume V is irreducible and W is the product completion of ¥).
We want to show that By is a retract of By, .

Define C(W), the coordinate set of W, to be the set of all pairs (a, i) where
acW,. For (a,i)€eC(W), we define S(a,i) to be the set of weW such that
w;=a; S(a,i) is called a slice of W. If (a,i), (b,j) are coordinates with i=j,
then L((a, i), (b,/))=S(a, i)US(b,); it is called an L-set. The set {i,;j} is called
the support of the L-set. We will first prove:

Theorem 8.1. If'V is imprint-closed and By is connected then V is an intersection of
L-sets of W.

Proof. It is enough to show that for each w¢ W—V there is an L-set that contains
V but not w. Let IS{l,...,r} be a minimal subset such that proj;(W)é proj; (V).
Then |I}>1 by the irreducibility of W. If |1|=3, let i, i,, i,¢I andlet &, 7%, B3¢V
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be such that proj;_; () =proji-;,(w). Then “=imp(?, i%:0%) satisfies 5V and
proji(D)=proj; (W), a contradiction; so |I|=2. Assume without loss of generality
that I={I,2}. Now by the irreducibility of W, there are vertices @, b€V such
that a,=w; and b,=w,. We claim L((bl, 1), (a3, 2)) contains ¥; this will prove
the theorem since wq L((b,, 1), (4, 2)).

We consider the set proj;(V) as the edge set of a bipartite graph I on W XW,.
The connectivity of By, implies that I' is connected. Now if ¢, dc¥V we have o =d,
and c;>d, then proji(imp(c,d:X))=(c,, x,) for any ZcV. Hence by the irre-
ducibility of ¥, each vertex in W, is adjacent in I to either exactly one vertex or to
all vertices in W, (and similarly with W and W, reversed). These conditions, together
with the facts that (ay, ap), (b4, b,) are in I but (a,, by) is not in T, imply that
every edge in I' is incident on either 4, in W, or a, in W, and hence
VEL((bD 1)’ (029 2))'

To prove (P3)—(P4) it is now enough to show:

Theorem 8.2. Let V be a connected subset of W=W,XW,X...XW, (where V is
irreducible and W is the product completion of V). If V is an intersection of L-sets
then By is a retract of By,.

Proof, Let (g, i), (b, j) be coordinates with i>j. Define the map f=f@d®.); .
as follows: f fixes a vector w if w;=a or w;=b and otherwise f(w) is obtained
from w by changing w; to a and w; to b. It is easy to see:

Lemma 8.3. fY®.9) is q retraction of W onto L((a, i), (b, )

We call f@)®. the elementary retraction to L((a, i), (b, )))
Now define a graph P on the vertex set {l,2, ...,r} with edges @, 7y ifVis
contained in an L-set with support {i,j}.

Lemma 8.4. For each (i,j)CE(P) there is a unique L-set containing V with sup-
port {i,j}.

Proof. Suppose V' SL((a,i),(b,j)). Since V is irreducible there are vertices ¢, dcV
such that ¢;#a and d;#b, and hence ¢;=b and d;=a. Since V is connected
there is a path from ¢ to d in By. Let & be the first vertex on the path with ¢;=a;
then the previous vertex on the path has jth coordinate equal to b (since it is in
L((a, i), (b,/)) so also e;=b. Now the only L-set with support {i,j} containing
¢ d, e is L((a, i), (b, j))

By Lemma 8.4, for each (i, j)¢E(P) there are unique elements a(j)cW,
and a;(i)€W, such that VEL((G, a( ), (J, a;(i))). Let f:j denote the corresponding
elementary retract, and let L;;=L((, a;(j)), (J, a;(1))). Set F={f;|{i,j)cE(P)}.

Lemma 8.5. For each ©EW there exists a sequence of elementary retracts in F
whose composition maps © to V.

Before proving this lemma, let us note that it implies that any superset ¥~
of ¥ can be retracted to ¥ and hence implies Theorem 8.2. To see this, proceed
by induction on |V’|; if |V’|=|V| the result is trivial. So assume \V’|=|¥V| and
let 5V’ —V. The sequence of retracts given by Lerama 8.5 fixes V' (by Lemma 8.3)
and maps ¥ to ¥ and hence maps ¥’ to another superset V” of ¥V having strictly
smaller cardinality than ¥”. Now apply the induction hypothesis to V”.
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Proof of Lemma 8.5. We first note:

Lemma 8.6. If (i, ), (j, k)€E(P) and a;(i)#a;(k) then (i, k)€E(P) with a(i)=
=a(Jj) and a(k)=a,j).

Proof. The hypotheses imply that every o€V satisfies either v;=a;(j) or v;=a;(i)
and either v;=a;(k) or v,=a(j). Therefore a;(i)+a;(k) 1mphes either v;=aq; ( )

or Uk—ak(])

For (i,j)€E(P), say ¥ satisfies {i,j) if #€L;;. We proceed by induction
on the number of unsatisfied edges; if there are none then #€¥V. So assume there
is at least one unsatisfied edge.

A satisfied edge (7, j) is critical if not both v;=a;(j) and v;=a;(i). We
orient each critical edge by i—j if v;=a;,(j) and v;=a;(i). (Note l’>_] means
that if we change »; and leave v; fixed then (i, ]) becomes unsatisfied.) By
Lemma 8.6 we have:

Lemma 8.7. (i) i—j and j—k implies i—~k;
(ii) if {i,j) is unsatisfied and i~k then (j, k) is an unsatisfied edge
of E(P).

From (i) and the fact that each edge has a unique orientation we have:

Lemma 8.8. —~ is a transitive acyclic relation, i.e., a partial order, on {1, ...,r}.

Let us call an element h€{l, ..., #} a sink if no edge is oriented away from it.
Now let {i,j) be any unsatisfied edge. By Lemma 8.8 and a basic property of
partial order relations there is a sink 4 with either i=h or i—~h. Then Lemma 8.7 (ii)
implies ¢h,j) is an unsatisfied edge in E(P). Slmllarly there is a sink k with either
Jj=k or j—~k and, again by Lemma 8.7 (ii), (h, k) is an unsatisfied edge in E(P).
Then f, (D) satisfies (h, k). Moreover since h and k are sinks, f,,(¥) satisfies any
edge that ¥ does. Hence f,,(v) has fewer unsatisfied edges and we can apply the
induction hypothesis to complete the proofs of Lemma 8.5 and Theorem 8.2. |}

9. Computing W X(G)
To complete the proof of Theorem 3.1 we show
Lemma 9.1. If WX(G) is finite then WX(G)=0(G).

Proof. If WCV(G) induces a clique then Gy is always retract of G and so by
Proposition 2.3 and Lemma 2.7, WX(G)=WX(Gy) so WX(G)=6O(G). Now if
WX(G) is finite then (P3) says that G =By, where V is a connected imprint closed
subset of W X...XW, (where W X...XW, isirreducible). Then we claim for each i,
0@ =Wl

If a, bW, then by the irreducibility of W, there are vectors @, weV with
v;=a and w;=b; by the connectivity of V" we can choose such & and w that agree
in all other positions. Then {imp (5, w:y)|yc¥V} forms a clique of size || in V.

Finally the proof of (P3)—(P4) shows By is a retract of By, so by Lemmas 2.6
and 2.7 and Proposition 2.3, WX (BV)§,-IE?SX, {iFl}=0e(G).
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If we want to determine WX(G) for a given graph we can do either of the

following.

A4)  Check whether G satisfies P2. If not, WX (G)=-=. If so, then since every
edge is in a unique maximal clique, @ (G) is easily computed.

B)  Construct the R-equivalence classes £, ..., E, of E(G). If G/(E-E)
is not a clique for some i then WX (G)=e<-. Otherwise WX(G)=
=max [V(G/(E- E))|.

10. Remarks and Open Problems

A) Graphs of Windex 2

It is not difficult to show that, for triangle free graphs, (P2) is equivalent to
USTP. Furthermore, as was observed by Bandelt, every weak retract of a hyper-
cube is obtainable by a strong retraction map. Hence in this case we can refine
Theorem 3.1:

Theorem 10.1. The following conditions on a connected graph G are equivalent:
Q) WX(G)=2;
(Q2) G has USTP;
(Q3) G is a median-closed subgraph of a hypercube;
(Q4) G is a weak retract of a hypercube;
(Q5) G is a strong retract of a hypercube.

The equivalence of (Q2) through (Q5) were already known and characterize
a well-studied class of graphs called median graphs (see [33], [34], [4]).

B) Optimal Waste Ratios

Since “most” graphs do not have finite windex, it is natural to consider
how well a window-k algorithm can perform on a given graph. If 4 is any algorithm
for the DLP on a graph G and g is a problem instance, let C (o) be the cost of the
response sequence produced by algorithm 4 for . For instance if 4 is the (window 1)
algorithm that defines the ith response to be equal to the /th request then it is easy
to show that for any input g,

Cu(@) =2-0PT(g).
We propose:

Conjecture 10.2. Ler G be any graph and k be an integer =1. Then there exists an
algorithm A for the DLP on G that operates within window k such that on any problem
instance g,

Culo) = ( 1 +%] OPT (o).

C) The Search Value of a Graph

The average value of an instance aya,...a, of the DLP on G is defined to
be AV(aya,...a,)=0PT(aya,...a,)/n. In [12], we defined the search value A(G)
to be the worst case average cost of an arbitrarily long request sequence. More



130 F. R. K. CHUNG, R. GRAHAM, M. E. SAKS

precisely, if 4,(G)= max AV (a,a,...a,)/n then
ayay...a,

A(G) = lim sup 4,(G).

Bounds on A(G) are obtained in [12}, it is unknown whether 1(G) is polynomially
computable.
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