

QUASI-RANDOM GRAPHS

F. R. K. CHUNG, R. L. GRAHAM and R. M. WILSON

Received October 29, 1987 Revised March 5, 1988

We introduce a large equivalence class of graph properties, all of which are shared by socalled random graphs. Unlike random graphs, however, it is often relatively easy to verify that a particular family of graphs possesses some property in this class.

1. Introduction

Perhaps the simplest model of generating a "random" graph G on n vertices is the process which considers each of the possible pairs $\{v, v'\}$ of vertices of G, and decides independently with probability 1/2 whether or not $\{v, v'\}$ is an edge. Strictly speaking, this process induces a probability distribution on the space $\mathcal{S}(n)$ of (ordered) graphs on n vertices, with each particular graph having probability $2^{-\binom{n}{2}}$. It may happen that for some graph property \mathcal{P} , it is true that

$$\Pr \{G \in \mathcal{S}(n) : G \text{ satisfies } \mathcal{P}\} \to 1 \text{ as } n \to \infty.$$

In this case, a typical graph in $\mathcal{S}(n)$, which we denote by $G_{1/2}(n)$, will have property \mathcal{P} with overwhelming probability as n gets large. (For a much fuller discussion of these concepts, the reader can consult [6], [15] or [2].) We sometimes abbreviate this by saying that $G_{1/2}(n)$ almost always has property \mathcal{P} . For example, $G_{1/2}(n)$ almost always has all but o(n) of its vertices with degree (1+o(1))n/2.

The main thrust of this work will be to show the equivalence of a number of disparate graph properties, all possessed by almost all $G_{1/2}(n)$, in the following sense: Any graph satisfying any one of the properties must of necessity satisfy all the others. We term such graphs quasi-random. We follow much in the spirit of the recent seminal paper of Thomason [18] in which many properties of " (p, α) -jumbled" graphs are presented (see also [17]). In both cases, such graphs share many large scale properties with random graphs (with the appropriate edge probabilities). For ease of exposition we have restricted our attention here to quasi-random graphs corresponding to edge probability 1/2 (at the end of the paper we mention the more general situation). Our initial impetus for this work had its roots in some early papers of Wilson [20], [21], and a more recent one of Rödl [16].

2. Notation

Let G=(V,E) denote a graph with vertex set V and edge set E. We use the notation G(n) (and G(n,e)) to denote that G has n vertices (and e edges). For $X\subseteq V$, we let $X|_G$ denote the subgraph of G induced by X, and we let e(X) denote the number of edges of $X|_G$. For $v\in V$, define

$$nd(v) := \{x \in V: \{v, x\} \in E\}, deg(v) := |nd(v)|.$$

Further, if G' = (V', E') is another graph, we let $N_G^*(G')$ denote the number of (labelled) occurrences of G' as an induced subgraph of G. In other words, $N_G^*(G')$ is the number of injections $\lambda \colon V' \to V$ such that $\lambda(V)|_G \cong G'$. The quantity $N_G^*(G')$ is related to $\overline{N}_G^*(G')$, the number of unlabelled occurrences of G' in G by

$$N_G^*(G') = \overline{N}_G^*(G')/|Aut(G)|,$$

where Aut(G) denotes the automorphism group of G. We will often just write $N^*(G')$ if G is understood. The final related notation we need is $N_G(G')$, the number of occurrences of G' as a (not necessarily induced) subgraph of G. Thus, if G' = (V', E') then

$$N_G(G') = \sum_H N_G^*(H)$$

where the sum is taken over all $H = (V', E_H)$ where $E_H \supseteq E'$.

3. The main results

We next list a set of graph properties which a graph G=G(n) might satisfy. Each of the properties will contain occurrences of the asymptotic "little-oh" notation $o(\cdot)$. However, the dependence of different $o(\cdot)$'s on the particular properties they refer to will ordinarily be supressed. The use of these $o(\cdot)$'s can be viewed in two essentially equivalent ways.

In the first way, suppose we have two properties P and P', each with occurrences of o(1), say. Thus, P = P(o(1)), P' = P'(o(1)). The implication " $P \Rightarrow P'$ " then means that if each o(1) in P(o(1)) is replaced by a fixed (but arbitrary) function f(n) = o(1) (i.e., $f(n) \to 0$ as $n \to \infty$), then there is some other function f'(n) = o(1) (depending on f) so that if G(n) satisfies P(f(n)) then it must also satisfy P(f'(n)). The particular choice made for f depends on the context, common ones being $n^{-1/2}$ and $1/\log n$ (when f(n) = o(1)).

In the second way, we can think of considering a family \mathscr{F} of graphs G(n) with $n\to\infty$. In this case, the interpretation of o(1) is the usual one as G=G(n) ranges over \mathscr{F} .

 $P_1(s)$: For all graphs M(s) on s vertices,

$$N_G^*(M(s)) = (1 + o(1))n^s 2^{-\binom{s}{2}}.$$

The content of $P_1(s)$ is that all of the $2^{\binom{s}{2}}$ labelled graphs M(s) on s vertices occur asymptotically the same number of times in G (just as we would expect for $G_{1/2}(n)$).

Let C_t denote the cycle with t edges.

$$P_2(t)$$
: $e(G) \ge (1 + o(1)) \frac{n^2}{4}$, $N_G(C_t) \le (1 + o(1)) (\frac{n}{2})^t$.

Let $A = A(G) = (a(v, v'))_{v,v' \in V}$ denote the adjacency matrix of G, i.e., a(v, v') = 1 if $\{v, v'\} \in E$, and 0 otherwise. Order the eigenvalues λ_i of A (which of course are real) so that $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$.

$$P_3$$
: $e(G) \ge (1+o(1))\frac{n^2}{4}$, $\lambda_1 = (1+o(1))\frac{n}{2}$, $\lambda_2 = o(n)$.

We remark here that a result of Juhász [13] (see also [10]) shows that the random graph $G_{1/2}(n)$ has $\lambda_1 = (1+o(1))n/2$ and $\lambda_2 = o(n^{1/2+\epsilon})$ for any fixed $\epsilon > 0$.

$$P_4$$
: For each subset $S \subseteq V$, $e(S) = \frac{1}{4}|S|^2 + o(n^2)$.

$$P_5$$
: For each subset $S \subseteq V$ with $|S| = \left\lfloor \frac{n}{2} \right\rfloor$, $e(S) = \left(\frac{1}{16} + o(1) \right) n^2$.

For $v, v' \in V$, define

$$s(v, v') := \{ y \in V : a(v, y) = a(v', y) \}.$$

$$P_6: \sum_{v,v'} \left| s(v,v') - \frac{n}{2} \right| = o(n^3).$$

$$P_7: \qquad \sum_{v,v'} \left| |nd(v) \cap nd(v')| - \frac{n}{4} \right| = o(n^3).$$

There are several implications among the P_i which are immediate, e.g., $P_1(s) \Rightarrow P_2(s)$ and $P_4 \Rightarrow P_5$. Our main result asserts that for $s \ge 4$, and even $t \ge 0$, all the properties are in fact equivalent.

Theorem 1. For $s \ge 4$ and even $t \ge 4$.

$$P_2(4) \Rightarrow P_2(t) \Rightarrow P_1(s) \Rightarrow P_3 \Rightarrow P_4 \Rightarrow P_5 \Rightarrow P_6 \Rightarrow P_7 \Rightarrow P_2(4)$$
.

What was (initially) the most surprising to the authors was how strong the (apparently weak) condition $P_2(4)$ actually is. Graphs which satisfy any (and therefore, all) of these properties we call *quasi-random*.

A weaker property of G(n) is the following.

$$P_0$$
: $\sum_{v} \left| deg(v) - \frac{n}{2} \right| = o(n^2).$

It follows easily (using the Cauchy—Schwarz inequality) that the following property is equivalent to P_0 :

 P'_0 : All but o(n) vertices of G have degree $(1+o(1))\frac{n}{2}$.

In this case we say that G is "almost-regular".

Theorem 2.

$$P_1(4) \Rightarrow P_1(3) \Rightarrow P_0$$
.

One immediate consequence of Theorem 1 is the following.

Corollary. Let $\varepsilon > 0$ and suppose G = G(n) = (V, E) is quasi-random. Then for any $X \subseteq V$ with $|X| > \varepsilon n$, the induced subgraph $X|_G$ is quasi-random.

A number of results with a similar flavor have appeared in the literature. For example, in addition to the work of Thomason mentioned earlier (who, for example, proved $P_0 + P_7 \Rightarrow P_4$), Frankl, Rödl and Wilson [8] (extending earlier work of Rödl [16]) showed that $P_6 \Rightarrow P_1(s)$. (The proof given here is somewhat more direct.) In [1], Alon and Chung proved that for regular graphs, $P_3 \Rightarrow P_4$.

The flowchart shown in Fig. 1 gives an outline of our proof. The symbol F_i by an edge indicates that the corresponding implication is proved in Fact i.

In the final section we list various examples, counterexamples, extensions and open problems.

4. The proofs

We first make the following observation.

Fact 1. $P_1(s+1) \Rightarrow P_1(s)$.

Proof. Suppose M(s) is a fixed graph on s vertices. There are 2^s ways to extend it to a graph on s+1 vertices. By $P_1(s+1)$, for each (s+1)-vertex graph M(s+1) we have

$$N_G^*(M(s+1)) = (1+o(1))n^{s+1}2^{-\binom{s+1}{2}}.$$

Since each copy of M(s) in G is contained in n-s (s+1)-vertex subgraphs M(s+1), we obtain

$$N_G^*(M(s)) = (1 + o(1))n^{s+1} 2^{-\binom{s+1}{2}} 2^{s}/n = (1 + o(1))n^{s} 2^{-\binom{s}{2}}$$

which is $P_1(s)$, as required.

Fact 2. $P_1(3) \Rightarrow P_0$.

Proof. Let H_i , i=1, 2, 3, denote graphs with 3 vertices and i edges. Then we have

(1)
$$\sum_{v} deg(v) (deg(v) - 1) = N^*(H_2) + N^*(H_3) = (1 + o(1)) \frac{n^3}{4}$$

by $P_1(3)$ where $N^*(\cdot) = N_G^*(\cdot)$. On the other hand, by counting how often each edge can contribute to the various $N^*(H_i)$, we obtain

(2)
$$(n-2) \sum_{v} deg(v) = N^*(H_1) + 2N^*(H_2) + N^*(H_3) = (1+o(1)) \frac{n^3}{2}.$$

Thus, we have by Cauchy—Schwarz,

(3)
$$(1+o(1))\frac{n^3}{4} \ge \sum_{v} (deg(v))^2 \ge \frac{1}{n} (\sum_{v} deg(v))^2 \ge (1+o(1))\frac{n^3}{4}$$
, so that

$$\sum_{v} deg(v) = (1 + o(1)) \frac{n^2}{2}$$

which implies P_0 (or equivalently, P'_0).

Fact 3. $P_1(2t) \Rightarrow P_2(2t), t \ge 2$.

Proof. This follows at once using (0) and Facts 1 and 2.

Fact 4. $P_2(4) \Rightarrow P_3$.

Proof. Denote the eigenvalues of A = A(G) by

$$\lambda_1, \lambda_2, ..., \lambda_n$$
 with $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$.

First, it is easy to see that

$$|\lambda_1| \ge (1 + o(1)) \frac{n}{2}$$

since, for $\bar{v} = (1, 1, ..., 1)^t$, we have (see [11])

$$|\lambda_1| \ge \frac{\langle A\bar{v}, \bar{v} \rangle}{\langle \bar{v}, \bar{v} \rangle} = \frac{1}{n} \sum_{v} deg(v) \ge \left(\frac{1}{2} + o(1)\right) n.$$

Next, consider the trace $tr(A^4)$ of A^4 . Clearly,

(6)
$$tr(A^4) = \sum_{i=1}^n \lambda_i^4 \ge |\lambda_1|^4 \ge (1 + o(1)) \frac{n^4}{16}.$$

On the other hand, by examining how terms can contribute to $tr(A^4)$ is it not hard to see that

(7)
$$tr(A^4) = N_G(C_4) + o(n^4) \le (1 + o(1)) \frac{n^4}{16}.$$

Thus,

$$tr(A^4) = (1 + o(1)) \frac{n^4}{16}$$

which by (4) and (6) implies

(8)
$$\lambda_1 = (1 + o(1)) \frac{n}{2}$$

and, since all the λ_i are real,

$$\sum_{i=2}^n |\lambda_i|^4 = o(n^4)$$

so that $|\lambda_2| = o(n)$, as required.

Fact 5. $P_2(2t) \Rightarrow P_3$, $t \ge 2$.

The proof of Fact 5 is similar to that of Fact 4 and is omitted. It should be noted here that the distinction between even and odd values of u for $P_2(u)$ arises from the fact that when u=2t is even, each of the individual terms λ_i^{2t} in the expression for $tr(A^{2t})$ is nonnegative, thus allowing bounds on their magnitudes to be derived from bounds on their sums (of $2t^{th}$ powers). This is not the case if u is odd, and indeed, we will give examples (Sec. 5) of graphs satisfying $P_2(2t+1)$ which are *not* quasi-random.

Fact 6. $P_3 \Rightarrow P_0$.

Proof. Let $\bar{v} = (1, 1, ..., 1)^{t}$. Since

 $||A\bar{v}|| \leq \lambda_1 ||\bar{v}||$

we have

$$\sum_{v} (deg(v))^2 \leq (1+o(1)) \frac{n^3}{4}.$$

However, by assumption,

$$e(G) = \frac{1}{2} \sum_{v} deg(v) \ge (1 + o(1)) \frac{n^2}{4}$$

so that by Cauchy-Schwarz (as in (3))

$$\sum_{v} \left| deg(v) - \frac{n}{2} \right| = o(n^2)$$

as required.

Fact 7. $P_3 \Rightarrow P_4$.

Proof. Let \bar{e}_i denote a set of orthonormal eigenvectors corresponding to the eigenvalues λ_i of A (so that $||\bar{e}_i|| = 1$). By hypothesis.

$$\lambda_1 = \left(\frac{1}{2} + o(1)\right)n, \quad \lambda_i = o(n), \quad i > 1.$$

Define $\bar{u} = \frac{1}{\sqrt{n}} (1, 1, ..., 1)^t$.

Claim. $\|\bar{u} - \bar{e}_1\| = o(1)$.

Proof of Claim. Write $\bar{u} = \sum_{i} a_i \bar{e}_i$. Thus,

(9)
$$A\bar{u} = \sum_{i} a_{i} \lambda_{i} \bar{e}_{i}.$$

On the other hand, the j^{th} component of the vector $A\bar{u}$ is just $deg(v_j)/\sqrt{n}$ where v_j is the j^{th} vertex of G. Thus, by Fact 6, all but o(n) components of $A\bar{u}$ are $\left(\frac{1}{2} + o(1)\right)\sqrt{n}$. This means we can write

$$A\bar{u} = \left(\frac{1}{2} + o(1)\right)n\bar{u} + \bar{w}$$

where all but o(n) components of \bar{w} are $o(\sqrt[n]{n})$, and so $||\bar{w}|| = o(n)$. By (9) this implies

$$\sum_{i\neq 1} \left(\lambda_i - \frac{n}{2}\right) a_i \bar{e}_i = \overline{w} + \overline{u} \cdot o(n),$$

$$\left(\sum_{i\neq 1} \left(\lambda_i - \frac{n}{2}\right)^2 a_i^2\right)^{1/2} = \|\overline{w} + \overline{u} \cdot o(n)\| = o(n),$$

which in turn implies

$$\sum_{i=1}^{\infty}a_i^2=o(1).$$

Since $\bar{u} = a_1\bar{e}_1 + \bar{w}_1$ with $\|\bar{w}_1\| = o(1)$ while $\|\bar{u}\| = \|\bar{e}_1\| = 1$, we have $|a_1| = 1 + o(1)$. By a well known theorem of Frobenius (see [11]), all the coefficients of \bar{e}_1 (which is associated to λ_1 , the dominant eigenvalue of A) are nonnegative. Thus, $a_1 = 1 + o(1)$ which proves the Claim.

Proof of Fact 7. Let $\bar{s} = (s_1, ..., s_n)$ be the characteristic vector of $S \subseteq V = \{v_1, ..., v_n\}$, i.e.,

$$s_i = \begin{cases} 1 & \text{if } v_i \in S, \\ 0 & \text{otherwise.} \end{cases}$$

We want to show

(10)
$$e(S) = \frac{1}{4} |S|^2 + o(n^2).$$

Define $\bar{s}' = \bar{s} - \langle \bar{s}, \bar{e}_1 \rangle \bar{e}_1$. Since $\langle \bar{s}', \bar{e}_1 \rangle = 0$ then

(11)
$$\langle A\bar{s}', \bar{s}' \rangle \leq |\lambda_2| \|s'\|^2.$$

We will next estimate $\|\bar{s}'\|^2$ and $\langle A\bar{s}', \bar{s}' \rangle$. First, we have

(12)
$$\|\bar{s}'\|^2 = \|\bar{s} - \langle \bar{s}, \bar{e}_1 \rangle \bar{e}_1\|^2 \le \|\bar{s}\|^2 = |S|.$$

Also,

(13)
$$\langle A\bar{s}', \bar{s}' \rangle = \langle A\bar{s}, \bar{s} \rangle - 2\langle \bar{s}, \bar{e}_1 \rangle \langle A\bar{s}, \bar{e}_1 \rangle + \langle \bar{s}, \bar{e}_1 \rangle^2 \langle A\bar{e}_1, \bar{e}_1 \rangle = 2e(S) - \lambda_1 \langle \bar{s}, \bar{e}_1 \rangle^2$$
 and

$$\langle \bar{s}, \bar{e}_1 \rangle = \langle \bar{s}, \bar{u} + \overline{w}_1 \rangle = |S|/\sqrt{n} + \langle \bar{s}, \overline{w}_1 \rangle.$$

By the Claim, $\|\bar{w}_1\| = o(1)$, so that

$$|\langle \tilde{s}, \overline{w}_1 \rangle| \leq ||\tilde{s}|| ||\overline{w}_1|| = \sqrt{o(|S|)}.$$

Thus,

(14)
$$\langle \bar{s}, \bar{e}_1 \rangle = |S|/\sqrt{n} + o(\sqrt{|S|}).$$

Therefore, by (11), (12) and (13),

$$\langle A\bar{s}',\bar{s}'\rangle = 2e(S) - \left(\frac{1}{2} + o(1)\right)|S|^2 + o(n^2) \leq \lambda_2 \|\bar{s}'\|^2 \leq |S| \cdot o(n).$$

This implies

$$e(S) = \frac{1}{4}|S|^2 + o(n^2)$$

as required, and the proof of Fact 7 is completed.

Fact 8. $P_4 \Rightarrow P_0$.

Proof. Suppose for any subset $S \subseteq V$

$$\left| e(S) - \frac{1}{4} |S|^2 \right| < \frac{\varepsilon^2 n^2}{3}.$$

We will show that fewer than εn vertices of G have degree greater than $\left(\frac{1}{2} + \varepsilon\right) n$. Suppose to the contrary that there is a set T of $t \ge \varepsilon n$ vertices of degree greater than $\left(\frac{1}{2} + \varepsilon\right) n$. Thus,

$$\sum_{v \in T} deg(v) \ge \left(\frac{1}{2} + \varepsilon\right) tn.$$

By hypothesis,

$$e(G)<\frac{n^2}{4}+\frac{\varepsilon^2 n^2}{3}$$

$$e(T) < \frac{t^2}{4} + \frac{\varepsilon^2 n^2}{3}$$

$$e(T') > \frac{(t')^2}{4} - \frac{\varepsilon^2 n^2}{3}$$

where $T' := V \setminus T$ and t' := |T'|. Since

(16)
$$e(T') + \sum_{v \in T} deg(v) = e(G) + e(T)$$

then by the preceding estimates,

(17)
$$\frac{(t')^2}{4} - \frac{\varepsilon^2 n^2}{3} + \left(\frac{1}{2} + \varepsilon\right) tn < \frac{n^2}{4} + \frac{\varepsilon^2 n^2}{3} + \frac{t^2}{4} + \frac{\varepsilon^2 n^2}{3}.$$

This in turn implies

$$\varepsilon t n < \varepsilon^2 n^2$$

which is impossible for $t \ge \varepsilon n$.

It follows in the same way that fewer than εn vertices of G have degree less than $\left(\frac{1}{2} - \varepsilon\right) n$. This implies P_0 , and the Fact is proved.

Fact 9. $P_4 \Rightarrow P_6$. Assume that for any $S \subseteq V$,

$$\left|e(S)-\frac{1}{4}|S|^2\right|<\frac{\varepsilon^2\,n^2}{3}.$$

We will show that

$$\sum_{v,v'} \left| s(v,v') - \frac{n}{2} \right| < 20\varepsilon n^3,$$

which will imply P_6 .

From the proof of Fact 8, all vertices of V except for a set Y of size at most $2\varepsilon n$ have degrees between $\left(\frac{1}{2} - \varepsilon\right)n$ and $\left(\frac{1}{2} + \varepsilon\right)n$. For vertices $v, v' \in V$, define

$$f_{ij}(v, v') := |\{w \in V: a(v, w) = i, a(v', w) = j\}|$$

for $0 \le i, j \le 1$. Thus,

$$\left| f_{ij}(v,v') + f_{i'j'}(v,v') - \frac{n}{2} \right| \leq \varepsilon n$$

if $v, v' \in V \setminus Y := V'$ and, (i, j) = (0, 0) or (1, 1), and (i', j') = (1, 0) or (0, 1). Thus, in this case

$$|f_{11}(v, v') - f_{00}(v, v')| \leq 2\varepsilon n.$$

For a fixed $v \in V'$, let X(v) denote the set

$$\left\{v'\in V': \left|s(v,v')-\frac{n}{2}\right|>10\varepsilon n\right\}.$$

There are two possibilities:

(i) For all $v \in V'$, $|X(v)| \le 2\varepsilon n$. Thus,

$$\sum_{v,v'} \left| s(v,v') - \frac{n}{2} \right| \le 20\varepsilon n^3$$

and we are done.

(ii) For some $v_0 \in V'$, $|X(v_0)| > 2\varepsilon n$. Define

$$X_1 = \left\{ u \in X(v_0) : s(v_0, u) > \frac{n}{2} + 10\varepsilon n \right\},$$

$$X_2 = \left\{ u \in X(v_0) : s(v_0, u) < \frac{n}{2} - 10\varepsilon n \right\}.$$

Since $|X_1|+|X_2|=|X(v_0)|$ then either $|X_1| \ge \varepsilon n$ or $|X_2| \ge \varepsilon n$. We will treat the former case; the argument for the latter is very similar and is omitted. Now, for each $v \in X_1$, v is adjacent to $f_{11}(v_0, v)$ vertices in $nd(v_0)$. Since $s(v_0, v) > \frac{n}{2} + 10\varepsilon n$, we get

$$f_{11}(v_0, v) \ge (s(v_0, v) - 2\varepsilon n) \cdot 1/2 \ge \frac{n}{4} + 4\varepsilon n.$$

Thus, the number of edges $e(X_1, nd(v_0))$, which is the number of ordered pairs (u, v), $u \in X_1$, $v \in nd(v_0)$, is at least $|X_1| \left(\frac{n}{4} + 4\varepsilon n\right)$. By hypothesis,

$$\begin{split} e(X_1) &> \left(\frac{1}{4} |X_1|^2\right) - \frac{\varepsilon^2 n^2}{3}, \ e(nd(v_0)) &> \left(\frac{1}{4} |nd(v_0)|^2\right) - \frac{\varepsilon^2 n^2}{3}, \\ e(X_1 \cap nd(v_0)) &< \frac{1}{4} |X_1 \cap nd(v_0)|^2 + \frac{\varepsilon^2 n^2}{3}. \end{split}$$

Thus,

$$e(X_1 \cup nd(v_0)) \ge e(X_1) + e(nd(v_0)) + |X_1| \left(\frac{n}{4} + 4\varepsilon n\right) - 3e(X_1 \cap nd(v_0)) \ge$$

(19)
$$\geq \frac{1}{4} |X_1|^2 + \frac{1}{4} |nd(v_0)|^2 + |X_1| \left(\frac{n}{4} + 4\varepsilon n \right) - \frac{5\varepsilon^2 n^2}{3} - \frac{3}{4} |X_1 \cap nd(v_0)|^2 \geq$$
$$\geq \frac{1}{4} |X_1 \cup nd(v_0)|^2 + \varepsilon^2 n^2.$$

However, by hypothesis

(20)
$$e(X_1 \cup nd(v_0)) \leq \frac{1}{4} |X_1 \cup nd(v_0)|^2 + \frac{\varepsilon^2 n^2}{3}.$$

This is a contradiction to (19). This completes the proof of Fact 9. **Fact 10.** $P_5 \Rightarrow P_4$.

Proof. Suppose that for any subset $S \subseteq V$ with $|S| = \lfloor n/2 \rfloor$,

$$\left| e(S) - \frac{n^2}{16} \right| < \varepsilon n^2$$

where ε is fixed. We will show that for any $S' \subseteq V$

$$\left| e(S') - \frac{1}{2} \binom{|S'|}{2} \right| < 20\varepsilon n^2.$$

We will consider two cases:

(i) $|S'| \ge n/2$. By averaging over all subsets S'' of S' of size $\lfloor n/2 \rfloor$ we have (21)

$$e(S') = \sum_{S' \subseteq S'} e(S'') / {|S'| - 2 \choose |n/2| - 2} \le \frac{|S'|(|S'| - 1)}{|n/2|(|n/2| - 1)} \left(\frac{n^2}{16} + \varepsilon n^2\right) \le {|S'| \choose 2} \left(\frac{1}{2} + 8\varepsilon\right).$$

In the same way we can prove the corresponding lower bound

$$e(S') \ge {|S'| \choose 2} \left(\frac{1}{2} - 8\varepsilon\right)$$

and this case is completed.

(ii)
$$|S'| < \frac{n}{2}$$
. Suppose

(22)
$$e(S') \ge \frac{1}{2} {|S'| \choose 2} + 20\varepsilon n^2.$$

Since $n-|S'| > \frac{n}{2}$ than by case (i) for $\overline{S}' := V \setminus S'$ we have

(23)
$$e(\bar{S}') > \binom{n-|S'|}{2} \left(\frac{1}{2} - 8\varepsilon\right),$$
$$e(\bar{S}') < \binom{n-|S'|}{2} \left(\frac{1}{2} + 8\varepsilon\right).$$

Thus, the number of edges $e(S', \bar{S}')$ between S' and \bar{S}' is

$$e(S', \bar{S}') = e(G) - e(S') - e(\bar{S}').$$

Now we will consider the average value of $e(S' \cup S'')$ where S'' ranges over all subsets of \overline{S}' of size $\lfloor n/2 \rfloor - \lfloor S' \rfloor$ (so that $\lfloor S' \cup S'' \rfloor = \lfloor n/2 \rfloor$). This average is just

$$\sum_{S''\subseteq S'} e(S'\cup S'') / \binom{n-|S'|}{\lfloor n/2\rfloor - |S'|} =$$

$$= \binom{n-|S'|}{\lfloor n/2\rfloor - |S'|}^{-1} \left\{ e(S') \binom{n-|S'|}{\lfloor n/2\rfloor - |S'|} + e(\bar{S}') \binom{n-|S'|-2}{\lfloor n/2\rfloor - |S'|-2} + e(\bar{S}') \binom{n-|S'|-1}{\lfloor n/2\rfloor - |S'|-1} \right\} =$$

$$= e(S') + \frac{(\lfloor n/2\rfloor - |S'|)(\lfloor n/2\rfloor - |S'|-1)}{(n-|S'|)(n-|S'|-1)} e(\bar{S}') + \frac{(\lfloor n/2\rfloor - |S'|)}{(n-|S'|)} e(S', \bar{S}') =$$

$$= \frac{\lfloor n/2\rfloor}{n-|S'|} e(S') - \frac{(\lfloor n/2\rfloor - |S'|)[n/2]}{(n-|S'|)(n-|S'|-1)} e(\bar{S}') + \frac{(\lfloor n/2\rfloor - |S'|)}{(n-|S'|)} e(G) >$$

$$\geq \frac{\lfloor n/2\rfloor}{n-|S'|} \left(\frac{1}{2} \binom{|S'|}{2} + 20\varepsilon n^2\right) - \frac{(\lfloor n/2\rfloor - |S'|)[n/2]}{(n-|S'|)(n-|S'|-1)} \binom{n-|S'|}{2} \left(\frac{1}{2} + 8\varepsilon\right) +$$

$$+ \frac{\lfloor n/2\rfloor - |S'|}{n-|S'|} \binom{n}{2} \left(\frac{1}{2} - 8\varepsilon\right) > \frac{n^2}{16} + \varepsilon n^2.$$

However, this contradicts the hypothesis that all $X \subseteq V$ with $|X| = \lfloor n/2 \rfloor$ have $e(X) < \left(\frac{1}{16} + \varepsilon\right) n^2$. In the same way it follows that

$$e(S') > \frac{1}{2} \binom{|S'|}{2} - 20\varepsilon n^2.$$

This completes the proof of Fact 10. The reverse implication $P_5 \Rightarrow P_4$ is immediate.

Fact 11. $P_7 \Rightarrow P_6$.

Proof. Let A=A(G) denote the adjacency matrix of G, with eigenvalues λ_i where $|\lambda_i| \ge |\lambda_2| \ge ... \ge |\lambda_n|$. Since all but $o(n^2)$ entries of $A^2 := (b(v, v'))_{v,v' \in V}$ are (1+o(1))n/4 (by P_7) then for $\bar{v} := (1, 1, ..., 1)^t$ we have

$$\lambda_1^2 \|\bar{v}\|^2 = \lambda_1^2 n \ge \|A\bar{v}\|^2 = \langle A\bar{v}, A\bar{v} \rangle = \langle A^2\bar{v}, \bar{v} \rangle = (1 + o(1))n^3/4$$

i.e.,

$$\lambda_1 \geq (1+o(1))n/2.$$

Since all the λ_i are real then

$$tr(A^4) = \sum_{i} \lambda_i^4 \ge \lambda_1^4 \ge (1 + o(1))n^4/16.$$

On the other hand,

$$tr(A^4) = \sum_{v,v'} b(v,v')b(v',v) = (1+o(1))n^2(n/4)^2 = (1+o(1))n^4/16$$

which implies

$$\lambda_1 = (1 + o(1))n/2, \quad \lambda_2 = o(n).$$

Now, define $\bar{u} := \bar{v}/\sqrt{n}$ and let $\bar{e}_1, ..., \bar{e}_n$ denote a set of orthonormal eigenvectors for $\lambda_1, ..., \lambda_n$. Writing $\bar{u} = \sum_i a_i \bar{e}_i$ we have

$$A^{2}\bar{u} = \sum_{i} a_{i} \lambda_{i}^{2} \bar{e}_{i} = (1 + o(1)) \frac{n^{2}}{4} \bar{u} + \bar{w} = (1 + o(1)) \frac{n^{2}}{4} \sum_{i} a_{i} \bar{e}_{i} + \bar{w}$$

where all but o(n) components of \bar{w} are $o(n^{3/2})$. Thus,

$$\sum_{i>1} \left(\lambda_i^2 - \frac{n^2}{4}\right)^2 a_i^2 \le \sum_i \left(\lambda_i^2 - \frac{n^2}{4}\right)^2 a_i^2 = \|\overline{w} + o(n^2)\overline{u}\|^2 = o(n^4)$$

which implies $\sum_{i=1}^{n} a_i^2 = o(1)$. Since $\bar{u} = a_1 \bar{e}_1 + \bar{w}_1$ with $\|\bar{w}_1\| = o(1)$ and $\|\bar{u}\| = 1 = \|\bar{e}_1\|$ then we have $a_1 = 1 + o(1)$. Therefore,

$$\langle A\overline{u}, \overline{u} \rangle = \frac{1}{n} \sum_{v} deg(v) = \langle A(\overline{e}_1 + \overline{w}_1), (\overline{e}_1 + \overline{w}_1) \rangle = (1 + o(1)) \frac{n}{2}$$

which implies $\sum_{v} deg(v) = (1 + o(1)) \frac{n^2}{2}$. Since

$$\sum_{v,v'} |nd(v) \cap nd(v')| = \sum_{u} deg(u) (deg(u) - 1) = (1 + o(1))n^3/4$$

then by Cauchy—Schwarz we see that G is almost regular, i.e., satisfies P_0 . How-

ever, this implies that almost all pairs v, v' have each $f_{ij}(v, v')$ (from Fact 9) equal to (1+o(1))n/4. This in turn clearly implies P_6 .

Fact 12. $P_6 \Rightarrow P_1(s)$.

Proof. Suppose

(24)
$$\sum_{v,v'} \left| s(v,v') - \frac{n}{2} \right| = o(n^3).$$

We will show that for any graph M(s) on s vertices, the number $N_s := N_G^*(M(s))$ satisfies

$$N_s = (1 + o(1))n^s 2^{-\binom{s}{2}}.$$

Assume the vertex set of M(s) is $\{v_1, v_2, ..., v_s\}$. For $1 \le r \le s$, define M(r) to be the subgraph of M induced by the vertex set $V_r := \{v_1, v_2, ..., v_r\}$. We prove by induction on r that

(25)
$$N_r := N_G^*(M(r)) = (1 + o(1))n_{(r)}2^{-\binom{r}{2}}$$

where

$$n_{(r)} := n(n-1) \cdots (n-r+1).$$

For r=1, (25) is immediate. Assume for some r, $1 \le r < s$, that (25) holds. Define $\alpha := (\alpha_1, ..., \alpha_r)$ where the α_i are distinct elements of $[n] := \{1, 2, ..., n\}$ (which we take to be the vertex set of G). Also define $\varepsilon := (\varepsilon_1, ..., \varepsilon_r)$, $\varepsilon_i = 0$ or 1, and (as usual) for $i, j \in [n]$, a(i, j) = 1 if $\{i, j\}$ is an edge of G, and 0 otherwise. Finally, define

$$f_r(\alpha, \varepsilon) = \left| \{ i \in [n] : i \neq \alpha_1, \dots, \alpha_r \text{ and } a(i, \alpha_j) = \varepsilon_j, \ 1 \leq j \leq r \} \right|.$$

Note that N_{r-1} is the sum of exactly N_r quantities $f_r(\alpha, \varepsilon)$. Namely, for each embedding of M(r) into G, say $\lambda(v_j) = \alpha_j$, $1 \le j \le r$, $f_r(\alpha, \varepsilon)$ counts the number of ways of choosing $i \in [n]$ so that if we extend λ to V_{r+1} by setting $\lambda(v_{r+1}) = i$, and take $\varepsilon_j = a(v_{r+1}, v_j)$, then λ becomes an embedding of M(r+1) into G. Also note that there are just $n_{(r)}2^r$ quantities $f_r(\alpha, \varepsilon)$, since there are $n_{(r)}$ choices for α and α choices for α . Our next step will be to compute the first and second moments of α .

To begin with, we have

$$\vec{f_r} := \frac{1}{n_{(r)}2^r} \sum_{\alpha, \varepsilon} f_r(\alpha, \varepsilon) = \frac{1}{n_{(r)}2^r} \sum_{\alpha} \sum_{\varepsilon} f_r(\alpha, \varepsilon) = \frac{1}{n_{(r)}2^r} \sum_{\alpha} (n-r) = \frac{n-r}{2^r}$$

since every vertex $i \neq \alpha_1, ..., \alpha_r$ corresponds to a unique choice for ε . Thus,

$$\sum_{\alpha,\,\varepsilon} f_{\mathbf{r}}(\alpha,\,\varepsilon) = (n-r)n_{(\mathbf{r})} = n_{(\mathbf{r}+1)}.$$

Next, define

$$S_r := \sum_{\alpha, \epsilon} f_r(\alpha, \epsilon) (f_r(\alpha, \epsilon) - 1).$$

We claim that

(26)
$$S_{r} = \sum_{i \neq j} s(i, j)_{(r)}.$$

To see this, we interpret S_r as counting the number of ways of choosing

 $\alpha = (\alpha_1, ..., \alpha_r), \ \epsilon = (\epsilon_1, ..., \epsilon_r)$ and two other (ordered) vertices *i* and *j* in [n] so that

$$a(i, \alpha_k) = \varepsilon_k = a(j, \alpha_k), \quad 1 \le k \le r.$$

Summing over all possible ε reduces this to requiring just that

$$a(i, \alpha_k) = a(j, \alpha_k), \quad 1 \le k \le r.$$

Now, think of choosing i and j first. The required additional r vertices $\alpha_1, ..., \alpha_r$ must come exactly from $\{v \in [n]: a(i, v) = a(j, v)\}$. Therefore, there are $s(i, j)_{(r)}$ ways to choose them, which implies (26).

We next assert that (24) implies

(27)
$$\sum_{i \neq j} s(i,j)_{(r)} = (1+o(1))n^{r+2}2^{-r}.$$

To see this, first define

$$\varepsilon_{ij} := s(i,j) - \frac{n}{2}.$$

By (24),
$$\sum_{i\neq j} |\varepsilon_{ij}| = o(n^3)$$
. Also, $|\varepsilon_{ij}| \leq n$. Thus,

$$\sum_{i\neq j} |\varepsilon_{ij}|^a \leq n^{a-1} \sum_{i\neq j} |\varepsilon_{ij}| = o(n^{a+2}), \quad a \text{ fixed.}$$

Therefore,

$$\sum_{i \neq j} s(i,j)_{(r)} = \sum_{i \neq j} \left(\frac{n}{2} + \varepsilon_{ij}\right)_{(r)} =$$

$$= \sum_{k=0}^{r} \sum_{i \neq j} c_k \left(\frac{n}{2}\right)^k \varepsilon_{ij}^{r-k} \quad \text{(for appropriate constants } c_k) =$$

$$= \left(\frac{n}{2}\right)^r n_{(2)} + \sum_{k=0}^{r-1} \sum_{i \neq j} c_k \left(\frac{n}{2}\right)^k \varepsilon_{ij}^{r-k} \leq$$

$$\leq \left(\frac{n}{2}\right)^r n_{(2)} + \sum_{k=0}^{r-1} \sum_{i \neq j} |c_k| \cdot |\varepsilon_{ij}|^{r-k} n^k \leq$$

$$\leq \left(\frac{n}{2}\right)^r n_{(2)} + c \sum_{k=0}^{r-1} n^k \sum_{i \neq j} |\varepsilon_{ij}|^{r-k} \leq$$

$$\leq \left(\frac{n}{2}\right)^r n_{(2)} + c \sum_{k=0}^{r-1} n^k \cdot o(n^{r-k+2}) =$$

$$= \left(\frac{n}{2}\right)^r n_{(2)} + o(n^{r+2}) =$$

$$= n^{r+2} 2^{-r} (1 + o(1))$$

as claimed.

Note that by (26) and (27) we have

(28)
$$S_r = (1 + o(1))n^{r+2}2^{-r}.$$

Consequently,

$$\sum_{\alpha,\varepsilon} \left(f_r(\alpha,\varepsilon) - \bar{f}_r \right)^2 = \sum_{\alpha,\varepsilon} f_r^2(\alpha,\varepsilon) - \sum_{\alpha,\varepsilon} \bar{f}_r^2 = \sum_{\alpha,\varepsilon} \left(f_r^2(\alpha,\varepsilon) - f_r(\alpha,\varepsilon) \right) +$$

$$+ \sum_{\alpha,\varepsilon} f_r(\alpha,\varepsilon) - n_{(r)} 2^r (n-r)^2 2^{-2r} = S_r + n_{(r+1)} - n_{(r)} (n-r)^2 2^{-r} = o(n^{r+2}).$$

Finally, since from our earlier observation that

$$N_{r+1} = \sum_{\substack{N_r \text{ choices} \\ \text{of } (\alpha, \varepsilon)}} f_r(\alpha, \varepsilon)$$

then

$$\begin{split} |N_{r+1} - N_r \bar{f}_r|^2 &= \Big| \sum_{N_r \text{ terms}} \left(f_r(\alpha, \varepsilon) - \bar{f}_r \right) \Big|^2 \leq \\ &\leq N_r \sum_{N_r \text{ terms}} \left(f_r(\alpha, \varepsilon) - \bar{f}_r \right)^2 \quad \text{by Cauchy-Schwarz} \leq \\ &\leq N_r \sum_{\alpha, \varepsilon} \left(f_r(\alpha, \varepsilon) - \bar{f}_r \right)^2 = \\ &= o(N_r \cdot n^{r+2}) = o(n^{2r+2}) \end{split}$$

by induction. Consequently,

$$|N_{r+1}-N_r\bar{f}_r|=o(n^{r+1})$$

and so,

$$N_{r+1} = N_r f_r + o(n^{r+1}) = (1 + o(1)) n_{(r)} 2^{-\binom{r}{2}} \cdot (n-r) 2^{-r} + o(n^{r+1}) =$$

$$= (1 + o(1)) n_{(r+1)} 2^{-\binom{r+1}{2}}.$$

This completes the induction step and Fact 12 is proved.

Fact 13. $P_2(r) \Rightarrow P_7$.

Proof. This follows at once from the observation that

$$N_G(C_4) = 2 \sum_{v,v'} |nd(v) \cap nd(v')|_{(2)} \leq (1 + o(1)) \frac{n^4}{16}.$$

Applying Cauchy—Schwarz (twice) now gives the desired conclusion.

5. Examples and counterexamples

In this section we present examples of quasi-random graphs as well as counterexamples to quasi-randomness for various weakened forms of the previous graph properties considered. We conclude with a discussion of open problems and future directions.

To begin with we mention one of the most widely used examples of a deterministic "random" graph, the so-called quadratic residue (or Paley) graph Q_p (e.g., see [3], [12], [17]). It is defined for a prime $p \equiv 1 \pmod{4}$ by choosing $\{i, j\}$ to be an edge of Q_p precisely when i-j is a quadratic residue of p. It is common to rely on estimates of Weil [19] or Burgess [4] for character sums to establish the randomness properties of Q_p (see [12], [3]). However, it is quite easy to show that the quadratic residue graphs are quasi-random. To see this, observe that a vertex z is adjacent to both, or non-adjacent to both, of a pair x, y of distinct vertices of Q_p

if and only if the quotient $\frac{z-x}{z-y}$ is a quadratic residue of p. But for any of the $\frac{1}{2}(p-1)-1$ quadratic residues a other than 1, there is unique z such that

$$\frac{z-x}{z-y} = 1 + \frac{y-x}{z-y} = a.$$

Thus, $s(x, y) = \frac{1}{2}(p-3)$ so that P_6 holds.

We point out that Q_p does deviate from random graph $G_{1/2}(p)$ in the following way. The expected size of the largest clique in $G_{1/2}(p)$ has size $(1+o(1))(\log p)/(\log 2)$ (e.g., see [2]). However, the size of the largest clique in Q_p is now known by a recent result of S. Graham and C. Ringrose [23] to be as large as $c \log p \log \log \log p$ for infinitely many primes p. Earlier results of Montgomery [14] show that assuming the Generalized Riemann Hypothesis, we would have in fact a lower bound of $c \log p \log \log p$ infinitely often.

Yet another family of examples of quasi-random graphs arises from finite projective or affine planes. Let Π be an affine plane of order n, for example, a 2-dimensional vector space over a field of n elements. Let S be a subset of the n+1 points at infinity (i.e., a subset of the n+1 "slopes" of lines) and define a graph G_n whose vertices are the points of Π and where vertices x and y are adjacent if and only if the slope of the line of Π they determine belongs to the set S. As long as $|S| \approx \frac{n}{2}$, G_n will be quasi-random. The only property among $P_1 - P_7$ which is

easily verified directly is P_6 ; the others follow, of course. (In fact, if $|S| = \frac{n+1}{2}$,

then s(x, y) is exactly $\frac{1}{2}(n^2-3)$ for any pair of points x, y. For any S, G_n is strongly regular — these are examples of so-called Latin square graphs.)

Simple observations also show that the following graph G(n) (or any of its many relatives; see [9], [7]) are quasi-random: The vertices of G(n) are the *n*-sets of a fixed 2n-set; $\{v, v'\}$ is an edge of G(n) iff $|v \cap v'| \equiv 0 \pmod{2}$.

By a bisector of a graph G on a set V of n vertices, we mean the set of edges between some set $X \subset V$ of size $\lfloor n/2 \rfloor$ and the complementary set $\overline{X} := V \setminus X$. In a random graph, we expect the number of edges $e(X, \overline{X})$ in any bisector to satisfy

(29)
$$e(X, \overline{X}) = \left(\frac{1}{8} + o(1)\right) n^2.$$

This also holds (by property P_5) for quasi-random graphs as well. However, having good bisectors is *not* enough to guarantee quasi-randomness as the following example shows.

Let G(n) denote a graph on n vertices constructed as follows. The vertex set of G(n) consists of two disjoint sets V and V' of sizes $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor$, respectively. On V we have a complete graph while on V' there are no edges. Between V and V' we place a random bipartite graph (with edge probability 1/2). A simple computation shows that (29) holds for any set $X \subset V \cup V'$ with $|X| = \lfloor n/2 \rfloor$, although G(n) is far from being quasi-random.

However, it is true that (29) together with almost-regularity (or property P_0) is in fact a quasi-random property.

Let $G^*(4n)$ denote a graph on 4n vertices constructed as follows. The vertex set of $G^*(4n)$ consists of four disjoint sets V_1 , V_2 , V_3 , V_4 , each of size n. On V_1 and V_2 we have complete subgraphs. Between V_3 and V_4 we have a complete bipartite graph. Between $V_1 \cup V_2$ and $V_3 \cup V_4$ we place a random graph (with edge probability 1/2). It is easy to check that $G^*(4n)$ satisfies $P_1(3)$, P_0 and $P_2(2t+1)$ for any fixed t, but is not quasi-random. As mentioned earlier, this shows the real difference there is in this context between even and odd cycles.

Let H(n) be the graph consisting of the disjoint union of a complete graph $K_{n/2}$ and an independent set \overline{K}_n of size n/2. Then $N_{H(n)}(C_4) = (1+o(1))\frac{n^4}{16}$ although H(n) is not quasi-random. Of course, H(n) fails to satisfy the edge constraint required for $P_2(4)$.

In a similar vein, the graph L(n) consisting of a star with degree n/2 together with n/2 independent vertices has largest eigenvalue $\lambda_1 = (1 + o(1)) \frac{n}{2}$, and second largest eigenvalue $\lambda_2 = o(n)$, but is not quasi-random. Again the problem is the failure to satisfy the edge requirement of P_3 .

Let us call a family \mathscr{F} of graphs forcing if $N_{G(n)}(F) = (1+o(1))n^{\nu}2^{-e}$ for all $F = F(v, e) \in \mathscr{F}$ implies G(n) is quasi-random. In other words, if each $F \in \mathscr{F}$ occurs as a subgraph of G(n) about the same number of times it does in random graph $G_{1/2}(n)$ on n vertices, then G(n) is quasi-random. What are the forcing families? For example, by Fact 4 we see that if P_t denotes the path t vertices then $\{P_2, C_4\}$ is a forcing family (as is $\{P_2, C_{2t}\}$, more generally). On the other hand, as we have just noted, $\{P_2, P_3, C_3\}$ is not a forcing family. Other examples of forcing families are $\{C_{2s}, C_{2t}\}$, $s \neq t$, $\{P_2, K_{2,t}\}$, $t \geq 2$, and $\{K_{2,s}, K_{2,t}\}$, $s \neq t \geq 2$.

Another variation of this is the following. Let us call a graph F with t distinguished vertices $v_1, ..., v_t$ is forcing if:

(30)
$$\sum_{i_1,...,i_t} |s(i_1,...,i_t) - E(F)| = o(n^t) \cdot E(F)$$

(where $s(i_1, ..., i_t)$ is the number of mappings λ of F into G(n) with $\lambda(v_k) = i_k$, $1 \le k \le t$, and $E(F) = N_F(G_{1/2}(n))$, the expected number of occurrences of F in a random graph $G_{1/2}(n)$ implies G(n) is quasi-random. It is not difficult to show that if F is any star with all endpoints distinguished, or a path of length 3 with both endpoints distinguished, or C_4 with two opposite vertices distinguished, then F is forcing. However, a triangle with one vertex specified is not forcing. This can be seen because for the graph G consisting of two identical disjoint components, each being a random graph $G_p(n/2)$ with $p=2^{-1/3}$, (30) holds with $F=K_3$ (although G is not quasi-random). A challenging problem is to characterize the forcing graphs.

As we mentioned at the beginning we have restricted our notion of quasirandomness to correspond to "imitating" the graphs $G_{1/2}(n)$. The analogous results can be established by basically the same arguments for the general case $G_p(n)$, $0 . In fact, many of the results can be extended to the case when <math>p = p(n) \to 0$ as $n \to \infty$ (e.g., $p(n) = n^{-\alpha}$ for various $\alpha > 0$). However, these investigations we leave for a later paper (see also [17]).

We point out here that the following interesting related question has been raised by Erdős and Hajnal in [5]. Suppose H is a fixed graph and G(n) contains no induced subgraph isomorphic to H. Is it then necessarily true that either G(n) or $\overline{G}(n)$ contains a complete subgraph of size n^{ε} for a fixed $\varepsilon > 0$? It is known to be true if n^{ε} is replaced by $\exp\left(c\sqrt{\log n}\right)$.

Finally, we mention that it would be of great interest to know what the analogues of the preceding results might be for hypergraphs. Some first steps in this direction are taken in [22].

The authors wish to express their appreciation to N. Pippenger for several useful comments on an early draft of this paper.

References

- [1] N. Alon and F. R. K. Chung, Explicit constructions of linear-sized tolerant networks Discrete Math., 72 (1988), 15—20.
- [2] B. Bollobás, Random Graphs, Academic Press, New York, 1985.
- [3] B. Bollobás and A. Thomason, Graphs which contain all small graphs, European J. Comb. 2 (1981), 13—15.
- [4] D. A. Burgess, On character sums and primitive roots, *Proc. London Math. Soc.* 12 (1962), 179—192.
- [5] P. Erdős and A. Hajnal, On spanned subgraphs of graphs, Beitrage zur Graphentheorie und deren Anwendungen, Kolloq. Oberhof (DDR), (1977), 80—96.
- [6] P. Erdős and J. Spencer, Probabilistic Methods in Combinatorics, Akadémiai Kiadó, Budapest, 1974.
- [7] P. Frankl and R. L. Graham, Intersection theorems for vector spaces, European J. Comb. 6 (1985), 183—187.
- [8] P. Frankl, V. Rödl and R. M. Wilson, The number of submatrices of given type in a Hadamard matrix and related results (to appear).
- [9] P. FRANKL and R. M. WILSON, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357—368.
- [10] Z. FÜREDI and J. KOMLÓS, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233—241.
- [11] F. R. GANTMACHER, Matrix Theory, Vol. 1, Chelsea, New York, 1977.
- [12] R. L. Graham and J. H. Spencer, A constructive solution to a tournament problem, Canad. Math. Bull. 14 (1971), 45—48.
- [13] F. Juhász, On the spectrum of a random graph, Colloq. Math. Soc. János Bolyai 25, Algebraic Methods in Graph Theory, Szeged (1978), 313—316.
- [14] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer-Verlag, New York, 1971.
- [15] E. M. PALMER, Graphical Evolution, Wiley, New York, 1985.
- [16] V. RÖDL, On the universality of graphs with uniformly distributed eages, Discrete Math. 59 (1986), 125—134.
- [17] A. THOMASON, Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys in Combinatorics 1987 (C. Whitehead, ed.) LMS Lecture Notes Series 123, Cambridge Univ. Press, Cambridge, (1987), 173—196.
- [17] A. THOMASON, Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys
- [18] A. Thomason, Pseudo-random graphs, in Proceedings of Random Graphs, Poznań 1985 (M. Karonski, ed.) Annals of Discrete Math. 33 (1987), 307—331.
- [19] A. Weil, Sur les courbes algébrique et les variétés qui s'en déduisent, Actualités Sci. Ind. No. 1041 (1948).
- [20] R. M. WILSON, Cyclotomy and difference families in abelian groups, J. Number Th. 4 (1972), 17—47.
- [21] R. M. WILSON, Constructions and uses of pairwise balanced designs, in Combinatorics (M. Hall, Jr. and J. H. van Lint, eds.), Math. Centre Tracts 55, Amsterdam (1974), 18—41.
- [22] F. R. K. CHUNG and R. L. GRAHAM, Quasi-random hypergraphs, to appear.
- [23] S. W. GRAHAM and C. RINGROSE, to appear.

F. R. K. Chung

Bell Communications Research Morristown, New Yersey 07960, U.S.A.

R. L. Graham

AT & Bell Laboratories Murray Hill, New Yersey 07974, U.S.A.

R. M. Wilson

California Institute of Technology Pasadena, California 91125, U.S.A.