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We introduce a large equivalence class of graph properties, all of which are shared by so-
called random graphs. Unlike random graphs, however, it is often relatively easy to verify that a
particular family of graphs possesses some property in this class.

1. Introduction

Perhaps the simplest model of generating a “random” graph G on » vertices is
the process which considers each of the possible pairs {v, v’} of vertices of G, and
decides independently with probability 1/2 whether or not {v, v’} is an edge.
Strictly speaking, this process induces a probability distribution on the space & (n)
of (ordered) graphs on n vertices, with each particular graph having probability

2—(2). 1t may happen that for some graph property £, it is true that
Pr{Ge&(n): G satisfies } -1 as n —>eo.

In this case, a typical graph in & (n), which we denote by Gy,,(n), will have prop-
erty 2 with overwhelming probability as n gets large. (For a much fuller discussion
of these concepts, the reader can consult [6], [15] or [2].) We sometimes abbreviate
this by saying that G,,(n) almost always has property 2. For example, Gy (n)
almost always has all but o(n) of its vertices with degree (1+o(1))n/2.

The main thrust of this work will be to show the equivalence of a number of
disparate graph properties, all possessed by almost all G,,,(n), in the following
sense: Any graph satisfying any one of the properties must of necessity satisfy all
the others. We term such graphs quasi-random. We follow much in the spirit of
the recent seminal paper of Thomason [18] in which many properties of “(p, a)-
jumbled” graphs are presented (see also [17]). In both cases, such graphs share
many large scale properties with random graphs (with the appropriate edge prob-
abilities). For ease of exposition we have restricted our attention here to quasi-
random graphs corresponding to edge probability 1/2 (at the end of the paper we
mention the more general situation). Our initial impetus for this work had its roots
in some early papers of Wilson [20], [21], and a more recent one of R&d1[16].
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2. Notation

Let G=(V, E) denote a graph with vertex set ¥ and edge set E. We use the
notation G(n) (and G(n, €)) to denote that G has n vertices (and e edges). For
XSV, welet X|; denote the subgraph of G induced by X, and we let e(X) denote
the number of edges of X|;. For vcV, define

nd(v) ;= {x€V: {v, x}¢E}, deg (v):=|nd()|.

Further, if G’=(V’, E’) is another graph, we let NE&(G”) denote the number
of (labelled) occurrences of G’ as an induced subgraph of G. In other words, N&(G")
is the number of injections A: V'~V such that A(V)|;=G’. The quantity N&(G")
is related to N§(G’), the number of unlabelled occurrences of G’ in G by

Ne(G') = N&(@)/|4ut (G|,

where Aut(G) denotes the automorphism group of G. We will often just write
N*(G”) if G is understood. The final related notation we need is Ng(G'), the num-
ber of occurrences of G’ as a (not necessarily induced) subgraph of G. Thus, if G'=
=(V", E’) then

O Ne(G') = 2 Ne(H)

where the sum is taken over all H=(V’, E5) where Ey2FE’".

3. The main results

We next list a set of graph properties which a graph G=G(n) might sat-
isfy. Each of the properties will contain occurrences of the asymptotic “little-oh”
notation o(-). However, the dependence of different o(-)’s on the particular
properties they refer to will ordinarily be supressed. The use of these o(-)’s can
be viewed in two essentially equivalent ways.

In the first way, suppose we have two properties P and P’, each with occur-
rences of o(1), say. Thus, P=P(o(1)), P’=P’(o(1)). The implication “P=p’”
then means that if each o(1) in P(o(1)) is replaced by a fixed (but arbitrary) function
f(mM=o(1) (i.e., f(n)~0 as n—<o), then there is some other function f(m=0(1)
(depending on f) so that if G(n) satisfies P( f (n)) then it must also satisfy P(f'(n)).
The particular choice made for f depends on the context, common ones being n—1/2
and 1/logn (when f(n)=o0(1)).

In the second way, we can think of considering a family & of graphs G(n)
with n--e-. In this case, the interpretation of o(1) is the usual one as G=G(n)
ranges over &.

P,(s): For all graphs M(s) on s vertices,
N (M(5) = (1+o))mr2(3).
The content of P,(s) is that all of the 2(;) labelled graphs M(s) on s ver-

tices occur asymptotically the same number of times in G (just as we would expect
for Gllz(n)).
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Let C, denote the cycle with ¢ edges.
n? n)t
B(1): e(@) = (1 +o(1))T, Ng(C) = (1+0(1)) (—2—) .

Let 4=A(G)=(a(v, v")),, v denote the adjacency matrix of G, i.e., a(v, »")=1
if {v, v'}€E, and O otherwise. Order the eigenvalues 4; of 4 (which of course are real)
so that [A|z=|2l=...=|4].

n? n
B e@=z=(l+o())—, 4 =(1 +o(l))7, Ay = o(n).

We remark here that a result of Juh4sz[13] (see also [10]) shows that the
random graph Gy,(n) has A, =(14+0(1))n/2 and A,=o(n'2+¢) for any fixed £>0.

F;:  For each subset S SV, e(S)= —41—|S|2+o(n2).
B: For each subset S SV with |S|= [-2"-1 e(S) = (—113+o(1)) 72,

For v, v'€V, define
(v, V)= {yeV: a(v, y) = a(¥/, y)}.

B

s(v, v’)—%' = o(n®).

P

Ind(v) N nd(v")| —%

2
v,V
2 = o(n“).

v, v

There are several implications among the P, which are immediate, e.g., B(s)=B(s)
and F=F,. Our main result asserts that for s=4, and even r=0, all the prop-
erties are in fact equivalent.

Theorem 1. For s=4 and even t=4,
B@#)=FR()=>R($)=>PFk=>P=>PF=F= P> PB4.

What was (initially) the most surprising to the authors was how strong the
(apparently weak) condition P,(4) actually is. Graphs which satisfy any (and there-
fore, all) of these properties we call quasi-random.

A weaker property of G(n) is the following.

B > deg(v)—gl = o(n?).

v

It follows easily (using the Cauchy—Schwarz inequality) that the following
property is equivalent to P:

Pg: All but o(n) vertices of G have degree (1+0(1)) %

In this case we say that G is “almost-regular”.
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Theorem 2.
R#)= R(3)=> k.

One immediate consequence of Theorem 1 is the following.

Corollary. Let ¢>0 and suppose G=G(n)=(V,E) is quasi-random. Then for any
XSV with |X|>en, the induced subgraph X|g is quasi-random.

A number of results with a similar flavor have appeared in the literature. For
example, in addition to the work of Thomason mentioned earlier (who, for ex-
ample, proved P+ P,=P), Frankl, Rédl and Wilson [8] (extending earlier work
of R6d1[16]) showed that B,= B, (s). (The proof given here is somewhat more direct.)
In [1], Alon and Chung proved that for regular graphs, PB>FE.

The flowchart shown in Fig. 1 gives an outline of our proof. The symbol
F; by an edge indicates that the corresponding implication is proved in Fact i.

A (s)
D D)
H(z't)/———@—»Pz(zu p7.©L, Py
® @><@
| BN _® T

®

Pj(‘) "_""——"Pz(‘) '-'——""Pg —_—— P5
4 .
Fig. 1

In the final section we list various examples, counterexamples, extensions and
open problems.

4. The proofs
We first make the following observation.
Fact 1. B(s+1D=PR(s).

Proof. Suppose M(s) is a fixed graph on s vertices. There are 2 ways to extend it
to a graph on s+1 vertices. By P (s+1), for each (s+ 1)-vertex graph M(s+1)
we have

N&(M(s+1)) = (1+o))me+127(2),

Since each copy of M(s)in G is containedin n—s (s+ 1)-vertex subgraphs M(s+1),
we obtain

NsM ) = (1 +o(1))n‘+12_(s;1) 2/n = (1 +o(l))ns2_(;)
which is P (s), as required. ||
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Fact 2. B,(3)=P,.

Proof. Let H;, i=1,2, 3, denote graphs with 3 vertices and i edges. Then we have
ns
) 3 deg (v)(deg (v)~1) = N*(Hy)+ N*(Hy) = (1+0(1)) 5

by B (3) where N*(-)=Ng(-). On the other hand, by counting how often each
edge can contribute to the various N*(H;), we obtain

@ (=) 3 deg(v) = N*(H-+2N"(H + N* () = (1 +o(1) 2=

Thus, we have by Cauchy-—Schwarz,

3 3
@ (o) = 3 (@)= %(02 deg @) = (1+0(D) 2,
so that

;’ deg (v) = (1 +a(1))nT2
which implies F, (or equivalently, 7). |}
Fact 3. P, (2t)=P,(2t), t=2.
Proof. This follows at once using (0) and Facts 1 and 2. |
Fact 4. P,(4)=P,.
Proof. Denote the eigenvalues of A=A(G) by
s Aay ey Ay With 4] = [Ag] = ...2= 4,

First, it is easy to see that

@) Al = (1 +o(1))§
since, for 9=(1, 1, ..., 1), we have (see [11])
_ (4B,5) 1 (L
®) o = 50— 3 deg @) = (3-+o() .

Next, consider the trace tr (4*) of A% Clearly,
n 4
©) r(d) = izl = (1+o() 1
i=1

On the other hand, by examining how terms can contribute to #r (4%)is it not hard
to see that

™ tr (4% = No(C+o(n') = (1+0(D) ¢
Thus,

(4% = (1 +o(1))-;—16—
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which by (4) and (6) implies

®) h=(1+o()) 7
and, since all the 4, are real,

314 = o)
i=2
so that |A]=o0(n), as required. J

Fact 5. P,(2t)=P,, t=2.

The proof of Fact 5 is similar to that of Fact 4 and is omitted. It should be
noted here that the distinction between even and odd values of u for B,(u) arises
from the fact that when u=2¢ is even, each of the individual terms A¥ in the ex-
pression for r (4%) is nonnegative, thus allowing bounds on their magnitudes to
be derived from bounds on their sums (of 2¢'* powers). This is not the case if u is
odd, and indeed, we will give examples (Sec. 5) of graphs satisfying P,(2r+1)
which are not quasi-random.

Fact 6. P,=F,.

Proof. Let t=(1, 1, ..., 1). Since
48|l = 4, [|7]
we have

n3
Z (deg (v))2 = (1 + 0(1)) —4- .
However, by assumption,

1 n?
e(G) = 7;’ deg (v) = (1 +0(1))T

so that by Cauchy—Schwarz (as in (3))

2

v

deg (v) —%l = o(n%)

as required. |

Fact 7. P, P,.

Proof. Let ¢; denote a set of orthonormal eigenvectors corresponding to the eigen-
values 1; of 4 (so that |&| =1). By hypothesis.

M= [—;—+0(1))n, J=om), i=1
Define a=—l_-(1, 1., DL
Vn
Claim. |t —¢&,] =0(1).

Proof of Claim. Write #i=> g;¢;. Thus,
i
(9) A = 2 ai}»ié,‘
i
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On the other hand, the j® component of the vector Aii is just deg (vj)/)/; where
v; is the j* vertex of G. Thus, by Fact 6, all but o(n) components of Aui are

(—;—-4— 0(1)] ¥n. This means we can write

A = (%+0(1)] nii + W

where all but o(n) components of w are o(}/a, and so ||w|=o0(n). By (9) this
implies

> (j'i"‘;'"] a;é, = w+ii-o(n),

il

2 1/2
[rf—; (A“g) “f] = [W+i-om] = o(),

which in turn implies

> a:=o(l).

il

Since #=a,é,+w; with |W]|=0(1) while lii] =|&,| =1, we have |g|=1+0(1).
By a well known theorem of Frobenius (see {11]), all the coefficients of &, (which is
associated to 4, the dominant eigenvalue of 4) are nonnegative. Thus, a,=14o0(1)
which proves the Claim. |}

Proof of Fact 7. Let 5=(s,...,5,) be the characteristic vector of SC&V=

={v1, .. ), i€,
{1 if €S,
Si=

0 otherwise.
We want to show

(10) e(S) = IS +0(r).
Define §'=5—(5, &,)é,. Since (5, &)=0 then

1) (45, 5) = [AllIs']%

We will next estimate |52 and {As’, §). First, we have
(12) 1912 = 15—(8, &pal® = |51 = ISI.
Also,

(13) (45,5 = (45, §)— 25, 8,)(45, &)+ (5, )%, &) = 2¢(S)— 415, &,)°
and
(3, &) = (3, W+ W) = IS|[Vn+(, Wy).
By the Claim, ||w]=0(1), so that
K5, W)l = I8 1) = Vo(ISD.
Thus,

(14) (3, &) = 1S|/Yn+o(Y15)).
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Therefore, by (11), (12) and (13),
, 1 ”
(A5, 5) = 2e(S)— ( +0(1)) ISP+ o0(n®) = A [§]? = IS]- o(n).
This implies
1
e(S) = £ ISI*+o(r%)
as required, and the proof of Fact 7 is completed. J

Fact 8. P,=F,.
Proof. Suppose for any subset SCV

2.2
(15) Ie(S —%|S|2[ <2

We will show that fewer than en vertices of G have degree greater than (—;—+e) n.
Suppose to the contrary that there is a set T of t=en vertices of degree greater
than (—;—+s) n. Thus,

vEZ’T deg (v) = (—— ] tn.

By hypothesis,
2 2
e(G) < _+T
2 gin?
‘D=7+7%
2 2,2
o) = & ) g
3
where T":=V\T and ¢:=|T’|. Since
(16) e(T’)+v€2; deg(v) = e(G)+e(T)
then by the preceding estimates,
)2 en? [1 ] n? &n? 2 gint
an —4——T+ 2+8 th < 4+—3—'+4+ 3
This in turn implies
(18) stn < e2n?

which is impossible for #=¢n.
It follows in the same way that fewer than en vertices of G have degree less

than (%—s] n. This implies £, and the Fact is proved. J
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Fact9., P,=F,. Assume that for any SCV,

I oo &rt
e -7 ISP < -
We will show that
2 1s(v, v’)—%l < 20en®,

v, v
which will imply F;.
From the proof of Fact 8, all vertices of ¥ except for a set Y of size at most 2en

have degrees between [%—e) n and [—;-+ e) n. For vertices v, v'€V, define

Sy (v, V)= |{w€V: a(v,w) =1, a(¥,w) =j}|
for 0=i, j=1. Thus,

, , n
fij(vs \4 )+fi'j'(V,V )—‘—2—‘ = é&n

if v, VeM\Y:=V’ and, (i,j)=(0,0) or (1,1), and (’,;j)=(,0) or (0,1).
Thus, in this case

[ 120V, V) = foo (v, V)| = 2en.

For a fixed v€V’, let X(v) denote the set

{v’eV’: s(v,v’)—%i > 108n}.

There are two possibilities:
(i) For all ve¥V”’, | X(v)|=2en. Thus,

v.v

s(v, v’)—%l = 20en®

and we are done.
(ii) For some v, V’, | X(vo)|=2¢en. Define

X = {ueX(vo): s(vo, 1) > —g—+ IOen},

X, = {uEX(vo): S(vo, 1) < %—— IOen}.

Since |Xi|+|X.l=|X(v,)| then either |Xj|=en or |X,|=en. We will treat the
former case; the argument for the latter is very similar and is omitted.
Now, for each veX;, v is adjacent to fi;(vy,v) vertices in nd(v,). Since
n

) +10en, we get

$(vo, V)=

fll(VO, V) = (S(Vo, v)—Zen)- 1/2 = §+4an.
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Thus, the number of edges e(Xl, nd(v,)), which is the number of ordered pairs
(u,v), ucX,, vénd(v,), is at least |X;| (%+4an]. By hypothesis,

2

o) = (3 16) =55, e(nd0) > (5 macvgz) -2,

1 . &n?
e(X, Nnd(vy)) < vy 1Xy N nd(vy)| +—3—.

Thus,
e(X,Und(vy)) = e(Xy) + e(nd(ve)) + X, [ + 4sn] 3e(X,Nnd(vy)) =

5e2n?
3

(19) =X+ oo+l (5 4em) -2 2 1y, e =
) ] 3 ]
1
=— IX1 U nd(vo))? + %n?
However, by hypothesis
(20) e(X1 U nd(VO)) = — IXl U nd(V())I2 + '—3-

This is a contradiction to (19). This completes the proof of Fact 9. |
Fact 10. P,—P,.
Proof. Suppose that for any subset SSV with |S|=|[n/2),

e(S)—Tngl < en?

where ¢ is fixed. We will show that for any S'CV

e(S)— ['S’lJ] < 20en®.

We will consider two cases:
(i) |S’|=n/2. By averaging over all subsets S” of S’ of size |n/2] we have

(21)
€8)= 2 S ”)/ ([I:;ZJ 2) = Fl}gi]%i;_lzj_—ii?(nz +en ] = (Igl] (2 +8€]

In the same way we can prove the corresponding lower bound

= 5) 4

and this case is completed.



QUASI-RANDOM GRAPHS 355

(ii) |S’|<-;—. Suppose

22) e(S) = = (' » IJ + 20en®

Since n—lS’]>% than by case (i) for §:=V\S" we have

«® = (") z-%)

« = (3" (z+%)

Thus, the number of edges e(S’, S”) between S’ and S’ is
e(S, §) = e(G)—e(S")—e(S).

(23)

Now we will consider the average value of e(S’US”) where S” ranges over all
subsets of S’ of size [n/2]—|S’| (so that |S’US”|=|n/2]). This average is just

26U (o Bis) =

= ([n72IlS|:Sl"|) B {e ) ([n;lziﬁ}q] +e(®) [[n’;i l—ié’ﬁ 2] +

+e(S. ) [[n’;Z—] I—S|5|"T—l 1)} =

_ o5+ L= ISDGRI=ISI1=D) o (n2=ISD o0 gy

@IS D =I5T=1) =D
_ b2 o RIS g (n2A=ISD
T T RS ey oy S Gy i T i O

n/2] [ 1(I8] 2 (In/2] = IS7)) [n/2] -1
n—lS’l[—Z‘[Z)+208n]_(n—lS’I)(n-r-lS’|——1)( 2 )( +8e)

[n/2] - |8 [n) (i_ ) nt o

s \2) 7 8= gg ten
However, this contradicts the hypothesis that all XSV with |X|=|n/2] have
e(X)< (i +s) n% In the same way it follows that

16
e(S’) = ["i '] — 206,
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This completes the proof of Fact 10. The reverse implication P,=PF, is im-
mediate. |

Fact 11. B=P,.

Proof. Let A=A(G) denote the adjacency matrix of G, with eigenvalues 4,
where |A;|=|A|=...=]|A,|. Since all but o(n?) entries of A%:=(b(v, v')),, ey are
(1+o0())nf4 (by P) then for #:=(1, 1, ..., 1)* we have

A0I? = Afn = | 45]* = (4D, AD) = (A%, D) = (1 +0(1))n*/4
e = (1+o()n)2.
Since all the A; are real then
tr(4) = 2 2 = 1{ = (L+o(1))n'/16.
On the other hand, l
r(4 = 3 b(v,v)b(f, 1) = (14 o(1))r2(n/4)2 = (14 o(1))n*/16

which implies
A= (+o(M)n2, 2, = o(n).

Now, define #:=7 /]/-ﬁ and let &, ..., &, denote a set of orthonormal eigenvectors
for 4,,...,4,. Writing #= > a;¢; we have
i

2 2
A5 = 3 a3 = (1+o(1))—'—i—a+w - (1+o(1))—%20ié,-+v“v

where all but o(n) components of w are o(n®?). Thus,

> (u-5) o= 3 (2] = 15 +o0mae = o)

i>1

which implies 3 a?=0(1). Since ii=a,&+w, with |Ww;]=0(1) and |i||=1=] 5,
i>1
then we have a;=1+0(1). Therefore,

(AR, )y = 3 deg (5) = (A(&+ W), @t 7)) = (1+0(1) 2
which implies > deg (v)=(1+0(1)) nT?- Since

Z,,’: [nd@)Nnd(v')] = 3 deg (u)(deg (u)—1) = (1 +o(1))n*/4

then by Cauchy—Schwarz we see that G is almost regular, i.e., satisfies B,. How-
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ever, this implies that almost all pairs v, v’ have each f;;(v, v') (from Fact 9) equal
to (1+o(1))n/4. This in turn clearly implies F;. ||

Fact 12. B,=P,(s).

Proof. Suppose
(24) >

We will show that for any graph M(s) on s vertices, the number N,:=Ng(M(s))
satisfies

= o(n%).

s(v, v) —;

N, = (1+o()m2” ().

Assume the vertex set of M(s) is {v;, vs, ..., v}. For 1=r=s, define M(r) to be
the subgraph of M induced by the vertex set ¥:={v,, v, ..., v,}. We prove by
induction on r that

(25) N,:=NsM(@r)) = (1+ o(l))n(,,Z_(;)
where
nyy:=nn—1) . (n—r+1).

For r=1, (25) is immediate. Assume for some r, 1=r<s, that (25) holds. Define
a:=(x, ..., ) where the a; are distinct elements of [n]:={l,2,...,n} (which we
take to be the vertex set of G). Also define e:=(sy, ..., &), &=0 or 1, and (as
usual) for i, j€[n], a(i,/)=1 if {i,j} is an edge of G, and O otherwise. Finally,
define

S e) = |[{i€l): i # oy, ..o @, and ax) =¢;, 1 =j=r}].

Note that N,_, is the sum of exactly N, quantities f;(«, ¢). Namely, for each em-
bedding of M(r) into G, say A(v;)=w;, 1=j=r, f,(a,€) counts the number of
ways of choosing i€[n] so that if we extend A to ¥,,, by setting A(v,.,)=i, and
take &;=a(v,41,v;), then A becomes an embedding of M(r+1) into G. Also
note that there are just n,2" quantities f,(a, &), since there are ny,, choices for «
and 2" choices for e. Our next step will be to compute the first and second moments
of £,(a,¢).

To begin with, we have

1 _ 1 _ 1 _ n—r
.f;"—___z.f;'(a’e) = n(,_)?.";;f’(a’a) = n—(r)‘ﬁ;';("—’) ="

N2 &3
since every vertex i#a,, ..., o, corresponds to a unique choice for ¢. Thus,

2 (@, 8) = (n—r)ngy = Niyyy.
Next, define h
S,:= 2 fo(a, &)(fi (@, 8)—1).
We claim that *
(26) S, = 250/ )n-

i

To see this, we interpret S, as counting the number of ways of choosing
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a=(0y, ..., %), €=(&, ..., &) and two other (ordered) vertices i and j in [n] so that
a(i,y)=¢g=a(j,o), l=k=r
Summing over all possible ¢ reduces this to requiring just that
a(i, o) = a(j, o), =k=r

Now, think of choosing i and j first. The requlred additional r vertices o, ..., o,
must come exactly from {v€[n]: a(i, v)=a(}, v)}. Therefore, there are s(i, ])(,)
ways to choose them, which implies (26).

We next assert that (24) implies

@7 3 80 Doy = (1+o (D) +22-,
i=j
To see this, first define !

... n
&= s(l,.l)—'i'-
By (24), 3 leyl=o0(n®). Also, le;|=n. Thus,
i=j
> lel® = n*t 3 el = o(n*t+?), a fixed.
i) i%j

Therefore,
- n _
Zs6n0= 3(5+u), -
r k
=3 (—] g% (for appropriate constants ¢;) =
K=0i%j 2
ny r—k
=|7) "ot Z; ‘%' a5 8ii =
ny 5 r—k, k
= 5‘ n(2)+k§) ,'#21" lckl'leijl 'nt =
- ny r—k
= _j- g+ 2 n l%l& l =
n\r r—1 k42
= ? n(2)+0ké; n"-o(n" )=
(2 +2y
= ('2‘) Ney+o(*?) =
= n’+22"'(1 +o(1))
as claimed.

Note that by (26) and (27) we have
(28) S, = (1+o())m+22-",
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Consequently,
S(hwa=ir= IR~ I = 3 (Reo—fie )+
+ 2 1 (0 &) —npy 2 (n—r)*27" = S, 4 np iy — Ny (n—r)*27" = o(n"+?).

Finally, since from our earlier observation that

Neya= 2 fi(e9)

N, choices
of (a,&)

then
[Nppy— N2 = IN 2 (fl —f) =

=N, 3 (fi(a,e)—f) by Cauchy-Schwarz =

N, terms

= NraZ; (f;.(d, 8)_fr 2=

= o(N,-n"+%) = o(n**?)
by induction. Consequently,

|Nr+1—Nrfrl =o(m+h)
and so,

Mooy = N foto(r+) = (1+ o)y 2™ B . (n= 27 4 o(wr+Y) =

__(r+1)

= (1+0(1))n(,+1)2 2 .

This completes the induction step and Fact 12 is proved. [
Fact 13. P,(r)=P,.

Proof. This follows at once from the observation that
’ n4
Ng(C) =2 2 lnd(@) Nnd (@)@ = (1 +o(l))ﬁ .

Applying Cauchy—Schwarz (twice) now gives the desired conclusion. [

5. Examples and counterexamples

In this section we present examples of quasi-random graphs as well as counter-
examples to quasi-randomness for various weakened forms of the previous graph
properties considered. We conclude with a discussion of open problems and future
directions.

To begin with we mention one of the most widely used examples of a deter-
ministic “random” graph, the so-called quadratic residue (or Paley) graph Q, (e.g.,
see [3], [12], [17]). 1t is defined for a prime p=1 (mod4) by choosing {i,;} to
be an edge of Q, precisely when i—j is a quadratic residue of p. It is common to
rely on estimates of Weil[19] or Burgess[4] for character sums to establish the
randomness properties of @, (see [12], [3]). However, it is quite easy to show that
the quadratic residue graphs are quasi-random. To see this, observe that a vertex
z is adjacent to both, or non-adjacent to both, of a pair x, y of distinct vertices of Q,
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if and only if the quotient

is a quadratic residue of p. But for any of the

%( p—1)—1 quadratic residues a other than 1, there is unique z such that

ZoX P
z—y z—y
Thus, s(x, y)=% (p—3) so that P, holds.

We point out that Q, does deviate from random graph G,;(p) in the
following way. The expected size of the largest clique in G,,(p) has size
(1+0(1))(log p)/(log 2) (e.g., see [2]). However, the size of the largest clique in Q,
is now known by a recent result of S. Graham and C. Ringrose [23] to be as large
as c¢ log p loglog log p for infinitely many primes p. Earlier results of Montgomery
[14] show that assuming the Generalized Riemann Hypothesis, we would have in
fact a lower bound of ¢ log p loglog p infinitely often.

Yet another family of examples of quasi-random graphs arises from finite
projective or affine planes. Let IT be an affine plane of order n, for example, a 2-di-
mensional vector space over a field of n elements. Let S be a subset of the n+1
points at infinity (i.e., a subset of the n+1 “slopes™ of lines) and define a graph
G, whose vertices are the points of IT and where vertices x and y are adjacent if
and only if the slope of the line of IT they determine belongs to the set S. As long

= da.

as |S| AN,—g—, G, will be quasi-random. The only property among P,—P, which is
easily verified directly is F;; the others follow, of course. (In fact, if |S|= n;—l .

then s(x, y) is exactly -;— (n*—3) for any pair of points x, y. For any S, G, is strongly

regular — these are examples of so-called Latin square graphs.)

Simple observations also show that the following graph G(n) (or any of its
many relatives; see [9], [7]) are quasi-random: The vertices of G(n) are the n-sets
of a fixed 2n-set; {v, v’} is an edge of G(n) iff |vNv'|=0 (mod 2).

By a bisector of a graph G on a set ¥V of n vertices, we mean the set of edges
between some set XCV of size [n/2| and the complementary set X:=V\JX. In a
random graph, we expect the number of edges e(X, X) in any bisector to satisfy

(29) e(X, X) = [%+o(1)) 2.

This also holds (by property P;) for quasi-random graphs as well. However, having
good bisectors is not enough to guarantee quasi-randomness as the following example
shows.

Let G(n) denote a graph on n vertices constructed as follows. The vertex set
of G(n) consists of two disjoint sets ¥ and V" of sizes |n/2| and [n/2], respectively.
On ¥V we have a complete graph while on ¥’ there are no edges. Between V and ¥V’
we place a random bipartite graph (with edge probability 1/2). A simple computa-
tion shows that (29) holds for any set Xc ¥V UV’ with |X|=[n/2], although G(n) is
far from being quasi-random.

However, it is true that (29) together with almost-regularity (or property FB,)
is in fact a quasi-random property.
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Let G*(4n) denote a graph on 4n vertices constructed as follows. The vertex
set of G*(4n) consists of four disjoint sets ¥, V,, V3, ¥;, each of size n. On ¥
and ¥, we have complete subgraphs. Between ¥; and ¥, we have a complete bi-
partite graph. Between VUV, and V;UV, we place a random graph (with edge
probability 1/2). It is easy to check that G*(4n) satisfies F(3), B, and P,(2:+1)
for any fixed ¢, but is rnot quasi-random. As mentioned earlier, this shows the real
difference there is in this context between even and odd cycles.

Let H(n) be the graph consisting of the disjoint union of a complete graph
4

K, and an independent set K, of size n/2. Then Ny, (Cq)=(1+0(1)) % although

H (n) is not quasi-random. Of course, H (n) fails to satisfy the edge constraint required
for P,(4).
In a similar vein, the graph L(n) consisting of a star with degree n/2 together

with n/2 independent vertices has largest eigenvalue 1,=(1+0(1)) %, and second

largest eigenvalue A,=o0(n), but is not quasi-random. Again the problem is the
failure to satisfy the edge requirement of P;.

Let us call a family & of graphs forcing if Nggy(F)=(1+0(1))n*2-¢ for all
F=F(v, e)¢# implies G(n) is quasi-random. In other words, if each FEF occurs
as a subgraph of G(n) about the same number of times it does in random graph
Gy;5(n) on n vertices, then G(n) is quasi-random. What are the forcing families?
For example, by Fact 4 we see that if P denotes the path ¢ vertices then {F, C,}
is a forcing family (as is {P,, Cy,}, more generally). On the other hand, as we have
just noted, {P,, P, Cs} is not a forcing family. Other examples of forcing families
are {Cy, Cy), 571, {P, Ky .}, t=2, and {K,, Ky o}, s#1=2.

Another variation of this is the following. Let us call a graph F with ¢ dis-
tinguished vertices vy, ..., v, is forcing if:

(30) _ Zi Is(y, ..., i) — E(F)| = o(n)- E(F)

(where s(iy, ..., i) is the number of mappings A of F into G(n) with A(v)=§,
I=k=t, and E(F)=Ng(Gy;(n)), the expected number of occurrences of F in a
random graph G, (n)) implies G(n) is quasi-random. It is not difficult to show
that if F is any star with all endpoints distinguished, or a path of length 3 with
both endpoints distinguished, or C, with two opposite vertices distinguished, then
F is forcing. However, a triangle with one vertex specified is not forcing. This can
be seen because for the graph G consisting of two identical disjoint components,
each being a random graph G,(n/2) with p=2-13, (30)holds with F=K, (although
G is not quasi-random). A challenging problem is to characterize the forcing graphs.

As we mentioned at the beginning we have restricted our notion of quasi-
randomness to correspond to “imitating” the graphs G,,(n). The analogous results
can be established by basically the same arguments for the general case G,(n),
0<p=<1. In fact, many of the results can be extended to the case when p=p(n)~0
as n—~oo (e.g., p(n)=n—* for various «=0). However, these investigations we
leave for a later paper (see also [17]).

We point out here that the following interesting related question has been
raised by Erd8s and Hajnal in [5]. Suppose H is a fixed graph and G(n) contains
no induced subgraph isomorphic to H. Is it then necessarily true that either G(n)
or G(n) contains a complete subgraph of size n°® for a fixed ¢=0? It is known to

be true if n® is replaced by exp (c Vlogn).
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Finally, we mention that it would be of great interest to know what the

analogues of the preceding results might be for hypergraphs. Some first steps in
this direction are taken in [22].

useful

[1J N.

[2] B.
i3] B.

[4] D.
[51 P.
[6] p.
[7 P
[8] P.
9] P.
[10] Z.

[11] F.
[12] R.

[13] F.
[14] H.

[15] E.
[16] V.

[amn A.
171 A.
[18] A.
[19] A.
{20] R.
211 R.

[22] F.
[23] S.

The authors wish to express their appreciation to N. Pippenger for several
comments on an early draft of this paper.

References

AroN and F. R. K. CuunG, Explicit constructions of linear-sized tolerant networks
Discrete Math., 72 (1988), 15—20.

BoLLoBAS, Random Graphs, Academic Press, New York, 1985.

BoLrLoBAs and A. THoMAsSON, Graphs which contain all small graphs, European J. Comb.
2 (1981), 13—15.

A. BURGESS, On character sums and primitive roots, Proc. London Math. Soc. 12 (1962),
179—192.

ERrpds and A. HAINAL, On spanned subgraphs of graphs, Beitrage zur Graphentheorie und
deren Anwendungen, Kolloq. Oberhof (DDR), (1977), 80—96.
ERrDGs and J. SPENCER, Probabilistic Methods in Combinatorics, Akadémiai Kiad6, Buda-
pest, 1974,

FrRANKL and R. L. GRAHAM, Intersection theorems for vector spaces, European J. Comb.
6 (1985), 183—187.

FRANKL, V. RODL and R. M. WiLsoN, The number of submatrices of given type in a Hada-
mard matrix and related results (fo appear ).
FrankL and R. M. WiLson, Intersection theorems with geometric consequences, Com-
binatorica 1 (1981), 357—368.

FUrept and J. KomLOs, The eigenvalues of random symmetric matrices, Combinatorica 1
(1981), 233—241.

R. GANTMACHER, Matrix Theory, Vol. 1, Chelsea, New York, 1977.

L. GrauaMm and J. H. SPENCER, A constructive solution to a tournament problem, Canad.
Math. Bull. 14 (1971), 45—48.
JuHAsz, On the spectrum of a random graph, Collog. Math. Soc. Jdnos Bolyai 25, Algebraic
Methods in Graph Theory, Szeged (1978), 313—316.

L. MonTGoMERY, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227,
Springer-Verlag, New York, 1971.

M. PALMER, Graphical Evolution, Wiley, New York, 1985.

RopL, On the universality of graphs with uniformly distributed eages, Discrete Math. 59
(1986), 125—134.

THoMASON, Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys
in Combinatorics 1987 (C. Whitehead, ed.) LMS Lecture Notes Series 123, Cambridge
Univ. Press, Cambridge, (1987), 173—196.

TraoMAsoN, Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys
TroMASON, Pseudo-random graphs, in Proceedings of Random Graphs, Poznadi 1985
(M. Karonski, ed.) Annals of Discrete Math. 33 (1987), 307—331.

WEIL, Sur les courbes algébrique et les variétés qui s’en déduisent, Actualités Sci. Ind.
No. 1041 (1948).

M. WiLson, Cyclotomy and difference families in abelian groups, J. Number Th. 4 (1972),
17—47.

M. WiLsoN, Constructions and uses of pairwise balanced designs, in Combinatorics
(M. Hall, Jr. and J. H. van Lint, eds.), Math. Centre Tracts 55, Amsterdam (1974), 18—41,
R. K. CHUNG and R. L. GrAHAM, Quasi-random hypergraphs, 10 appear.
W. GraHAM and C. RINGROSE, fo appear.

F. R. K. Chung R. M. Wilson

Bell Communications Research California Institute of Technology
Morristown, New Yersey 07960, Pasadena, California 91125,

US.A.

U.S.A.

R. L. Graham

AT & Bell Laboratories
Murray Hill, New Yersey 07974,

U.S.A.

87-522 — Szegedi Nyomda — Felelds vezetd: Surdnyi Tibor igazgatéd



