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ABSTRACT We describe a large equivalence class of prop-
erties shared by most hypergraphs, including so-called random
hypergraphs. As a result, it follows that many global properties
of hypergraphs are actually consequences of simple local
conditions.

Hypergraphs form a natural generalization of graphs in which
(hyper)edges consist of k-element subsets of the vertices
rather than pairs in the case of graphs. In refs. 1 and 2, we
introduced the concept of a quasi-random graph property. It
was observed there that while the extension of these concepts
to hypergraphs would be highly desirable, substantial obsta-
cles to such an extension appeared to exist. In this note, we
announce the sought-after generalization. As a consequence,
not only do we now have methods for the explicit construc-
tion of hypergraphs which simulate many aspects of random
hypergraphs but our understanding of quasi-randomness in
ordinary graphs has been clarified as well.

Notation

For a fixed positive integer &, a k-uniform hypergraph G = (V,
E), or k-graph for short, consists of a set V = V(G), called the

vertex set of G, and a subset E = E(G) of the set (/‘(/ ) of
k-element sets of V, called the edges of G. We use the

notation G(n) to denote the fact that V has n elements; i.e.,
|V| = n. For X C V, we let G[X] denote the sub-k-graph of

G induced by X;ie., GIX1 = (X, En (})). Let xo: (V) —
{0,1} denote the edge indicator of G; i.e., for e € (/Y),
| 1 ife€E
Xole) = { 0  otherwise.

For another k-graph G’ = (V', E'), we let N§(G') denote
the number of labeled occurrences of G’ as an induced
subgraph of G. In other words,

N&GH =Ka: V' > V] GV =Gl

where = denotes the union of the natural notion of k-graph
isomorphism. If % is a family of k-graphs then N&(%) denotes
Uges NE(G').

Further, we denote the number of copies of G' occurring
as (not necessarily induced) sub-k-graphs of G by Ng(G').
Thus,

No(G') =2 N&(H),
where the sum is taken over all k-graphs

H = (V', Ey), where Ey D E'.
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There is a special k-graph on 2k vertices which will be
important in what follows. This k-graph is called a k-
octahedron or just octahedron, for short, and is denoted by
O = 04(x1(0), x1(1), x2(0), x2(1), . . . , xx(0), x4(1)) = Gr(X(2)).
The vertices of O, are the x;(g;), 1 =i <k, & € {0, 1}. The
edges of Oy consist of alf k&-sets of the form {x;(g1), x2(&2), . . . »
xi(eple; € {0, 1}, 1 = i < k}. Thus, Oy has 2* edges.

Finally, we will call a k-graph an even partial octahedron
if it has the same vertex set as Oy and has an edge set
consisting of an even number of the edges of 0;. We let O}
denote the set of all even partial octahedra based on O,
although occasionally we will let 0f denote an individual one,
as well. '

The Main Results

We are going to consider various properties which a k-graph
G = G(n) might satisfy. Each of the properties will contain
occurrences of the asymptotic ‘‘little oh’ notation o(1).
However, the dependence of the different o(1) values on the
particular properties they refer to will ordinarily be sup-
pressed. The use of these o(1) values can be viewed in two
essentially equivalent ways. '

In the first way, suppose we have two properties P and P’,
each with occurrences of o(1), so that P = P(o(1)), P' =
P’(0(1)). The implication ‘P => P’’’ then means that for each
& > 0 there is a 8 > 0 so that if G(n) satisfies P(8) then it must
also satisfy P’(¢g), provided n > ny(e).

In the second way, we can think of considering a family %
of k-graphs G(n) with n — . In this case, the interpretation
of o(1) is the usual one as G = G(n) ranges over ¥, with n —
o, As usual, ‘‘almost all”” (abbreviated a.a.) denotes a
fraction 1 + o(1) of the elements of the set in question.

We next state a series of properties for k-graphs G(n) which
are shared by almost all random k-graphs G.(n) on n
vertices. [For Gy,2(n), each possible &-set is chosen to be an
edge independently with probability 1/2.]

Oi(s): For all k&-graphs G'(s) on s vertices,
N&a(G'(s) = ( + o(ynt/2®,
0O,: For all k-graphs G'(2k), .
EalG'QR) = (1 + o(a/2 P,
0y: N0 = (1'+ o()n/2.

In other words, the number of induced even partial octa-
hedra 0% occurring in G(n) is at most (1 + o(1))n*/2, which
is just the expected number occurring in the random k-graph
Gy /a2(n).

I/Jor our final properties, we need another definition. Let G
= (V, E) be a k-graph and let x, y be elements of V. The
sameness (kK — 1)-graph G(x, y) is defined to be the (k —
D-graph G’ = (V’, E’) with V' = V\{x, y} and edge set

E = {e’ € (k Z,1> Xgle' U {x}g = Xgle' U {y})}.
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Q4 For almost all choices of x, y elements of V, the
sameness (k — 1)-graph G(x, y) of G(n) = (V, E) satisfies O,
with k replaced by £ — 1.

Qs: Forl=r=2k—-1landalmostallx,y €YV,
NownKED) = (@ + on/247),

where G(x, y) is the sameness (k — 1)-graph of G(n) = (V, E)
and K*~1 denotes the complete (k — 1)-graph on r vertices,

i.e., having all the possible (k r 1) edges (and we use the
convention that any set of r < k — 1 vertices forms a K1),

Several implications among these properties are immediate
or easily proved. For example,

012k) = Q2 = @z and O1(s + 1) = O4(s).

Our main result asserts that for s = 2k, all of these
properties are in fact equivalent.
THEOREM 1. For s = 2k,

Qi8) > Q> Q3> Q> Qs = Quls).

Hypergraphs which satisfy any one (and therefore all) of
these properties we call quasi-random. The proofs of the
various implications in Theorem I involve applications of the
second moment method, linear algebra, extremal hypergraph
theory, and results from ref. 2 and will be given elsewhere.

A useful consequence of Theorem [ is the following
characterization.

COROLLARY. A k-graph G = (V, E) is quasi-random if and
only if for almost all choices of X, y elements of V, the
sameness (k — 1)-graph G(x, y) is quasi-random.

The relevance of condition Q; stems from the following fact.
LEMMA 1. For any k-graph F = F(n),

NEOF) = (1 + o(1))n?/2.

A condition which is a consequence of quasi-randomness
is the following.
Os: Forall X C V,

EGIX])] = % (",{') + olnk),

In ref. 2, it was shown that for £ = 2, Qs implies quasi-
randomness. However, as was pointed out by Rodl (3), this
fails dramatically for k£ = 3. In fact, the following k-graph G,
= Gy(n) is a strong example of this failure. For a vertex set
V of size n, select a random (k — 1)-graph G = Gy»(n) = (V,
E). Then G, = (V, Eg) is the k-graph defined by choosing ¢y €

(/‘(/) to be an edge of G if and only if

> Xgle) =0 (mod 2).
(%)
THEOREM 2. For almost all choices of Gy»(n),
(@) forany X C V,

[B(GolX])| = % (",ﬁ) + o(n¥,

and
(b) Gy does not contain an induced copy of the k-graph
having k + 1 vertices and k edges.

In fact, J. H. Spencer (personal communication) has
strengthened (a) for the case k£ = 3 by showing for almost all
choices of Gy/2(n), :

|G - %('{')l < 200xP
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holds for all X C V. By results of Erdds and Spencer (4), this
is best possible (up to the value of the constant 200) for any
3-graph.

If G = (V, E)is a k-graph and v € V, define the projection
G to be the (k — 1)-graph with vertex set V\{v} and edge set

{e' € (k ‘_/ 1)‘6' Ui{vte E}.

Theorem I implies the following.
COROLLARY. If G = (V, E) is a quasi-random K-graph then
almost all projections G, v an element of V, are quasi-
random (k — 1)-graphs.

The reverse implication does not hold, however, as shown
by the k-graph G just described.
CorOLLARY. For almost all choices of Gy2(n), all the pro-
jections GY, v € V, are quasi-random (k — 1)-graphs.
Examples. We now give two simple explicit examples of
quasi-random k-graphs. Of course, almost all random -
graphs are quasi-random.

The “‘even intersection’ k-graph Ii(n) = (V, E) is defined
as follows. For V we take 211, the class of all subsets of [#]
={1,2,...,n} Akset{X;, ..., X} € Eif and only if

|le“‘ka|EO(m0d2).

FacT. Ii(n) is quasi-random.

For a prime p, define the (generalized) Paley k-graph Pi(p)
as follows. The vertex set of Pi(p) is the finite field GF(p).
A k-set {i;, . . . , iy} is an edge of P(p) if and only if iy + - - -
+ I is a quadratic residue modulo p.

FAct. P(p) is quasi-random.

Not surprisingly, I:(n) and Pi(p) have many relatives
which are also quasi-random—e.g., requiring the sets X; used
in defining edges of I;{n) to have a fixed cardinality (such as
[#/2]), or requiring the cardinality of the intersection to
belong to a fixed set Y C {0, 1, . .., 2m — 1} of size m of
residues modulo 2m [instead of being 0(mod 2)].
Questions. Perhaps the most natural open question we have
at present is to know the least value of s so that a k-graph
satisfying property Qi(s) is forced to be quasi-random. By
Theorem 1, Q,(2k) guarantees quasi-randomness. On the
other hand, it is not difficult to give examples of non-
quasi-random k-graphs which satisfy @;(k + 1). The first gap
occurs for k = 3. In particular, are there non-quasi-random
3-graphs which contain all (ordered) 3-graphs on five vertices
asymptotically equally often?

The following problem arises in connection with property
Qs. For each ﬁxedrt, is there a 2-graph G(n) so that Ng,(K,)
=1+ on2-®), 0 = r = 1, but for which Nguy(K,+ 1) #
1+ o(pa' +19-0%3) (where K, denotes the complete 2-graph
on r vertices)? It seems quite likely (to us) that such graphs
exist.

Finally, we mention a related intriguing problem of P.
Frankl and V. Rédl (personal communication). Suppose G =
G(n) = (V, E) is a 3-graph so that for every 2-graph H = (V,
E’), we have

(5) C EH = % Nuy(K3) + o(nd).

{eEE

In other words, for any H which has cr? triangles, about half
of them correspond to edges in G. Does this property imply
(or is it implied by) quasi-randomness? (See Note Added in
Proof.)

It seems to us that it would be profitable to explore
quasi-randomness extended to simulating random A-graphs
G,(n) for p # 1/2 or, more generally, for p = p(n), especially
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along the lines carried out so fruitfully for 2-graphs by
Thomason (5, 6) and by Haviland and Thomason (7).

Note Added in Proof. It is now known that the condition of Frankl and
Rédl is in fact equivalent to quasi-randomness.

1. Chung, F. R. K., Graham, R. L. & Wilson, R. M. (1988) Proc.
Natl. Acad. Sci. USA 85, 969-970.

bl

Proc. Natl. Acad. Sci. USA 86 (1989) 8177

Chung, F. R. K., Graham, R. L. & Wilson, R. M. (1989) Com-
binatorica, in press.

Rodl, V. (1986) Discrete Math. 59, 125-134.

Erdds, P. & Spencer, J. H. (1972) Networks 1, 379-385.
Thomason, A. (1987) London Math. Soc. Lect. Note Ser. 123,
173-196.

Thomason, A. (1987) Ann. Discrete Math. 33, 307-331.
Haviland, J. & Thomason, A. (1989) Discrete Math.75,255-278.





