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ABSTRACT

We introduce an equivalence class of varied properties for hypergraphs. Any hypergraph
possessing any one of these properties must of necessity possess them all. Since almost all
rafiddom hypergraphs share these properties, we term these properties quasi-random. With
these results, it becomes quite easy to show that many natural explicit constructions result
in hypergraphs which imitate random hypergraphs in a variety of ways.
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1. INTRODUCTION

In [1], the authors introduced the concept of “‘quasi-random’ graph properties.
Roughly speaking, these are a particular set of properties shared by almost all
random graphs which are equivalent, in the sense that any graph having any one
of these properties must necessarily have all of them (see [2] for a thorough
discussion of random graphs). Some examples of these properties (for graphs G
with n vertices, n large) are the following:

P;: G has at least (1+ o(1))n*/4 edges and at most (1+ o(1))n"/16 4-
cycles;

P,(s): For fixed s, each (ordered) graph M(s) on s vertices occurs (1+
o(1)n*2? times as an induced subgraph of G;

P,:  For any subset S of vertices of G, the number e(S) of edges spanned by
S satisfies e(S) = %|S]* + o(n’);

Random Structures and Algorithms, Vol. 1, No. 1 (1990)
© 1990 John Wiley & Sons, Inc. CCC 1042-9832/90/010105-20$04.00

105



106 CHUNG AND GRAHAM

P,:  For almost all choices of vertices u and v, the number s(u, v) of vertices
adjacent to either both u and v, or neither u nor v, satisfies s(u, v) =
(1 +o(1))n/2.

In particular, it turns out (rather unexpectedly) that P,(4)=> P, = P,(s) for
any fixed s, as n—». (We defer precise definitions and interpretations of our
terms until the next section).

As noted in [1], it is natural to try to extend these results to hypergraphs, that
is, the analogues of graphs in which “edges” are k-sets of some ground set for
some k, rather than just pairs, for the case of graphs. However, examples of
Erdos/Sos [3] and Rodl [4] showed that as soon as k exceeds 2, new difficulties
arise. In particular, if P* denotes the analogue of property P, for k-graphs (i.e.,
hypergraphs with k-sets for edges), then Rddl [4] constructed 3-graphs satisfying
P$ but not P{(4) (in fact, failing to contain even a single induced copy of a
certain 4-vertex 3-graph). Similarly, in Section 9, we give examples of k-graphs
satisfying P{” but not P{’(k + 1), and also examples satisfying P (k + 1) but
not P (k +2).

In this article, we show that nevertheless, it is possible to construct a
meaningful theory of quasi-randomness for general hypergraphs. For example, we
will show for k-graphs that P{(2k) implies P$(s) for any fixed s, as n— .

2. NOTATION AND PRELIMINARIES

A k-graph G =(V, E) consists of a set V= V(G), called the vertices of G, and a
subset E = E(G) of the set () of k-element sets of V, called the edges of G. We
use the notation G(n) to denote the fact that V has n elements, i.e., |V| = n. For
X CV, we let G[X] denote the sub-k-graph of G induced by X, i.e, G[X]=
(X, EN(%)). Let x5: (¥ )— {0, 1} denote the edge indicator of G, i.e., for

V) _{1 ifecE,
ee(k » Xo(€) = 0 otherwise .

For another k-graph G'=(V', E"), we let N;i(G') denote the number of
labelled occurrences of G’ as an induced subgraph of G. In other words,

N&(G") = {1 V' = V[G[AV)]= G}

where = denotes the natural notion of k-graph isomorphism. The quantity
NZE(G') is related to N;(G'), the number of unlabelled occurrences of G’ in G,

by
N&(G') = N&(G') /| Aur(G)

where Aut(G) denotes the automorphism group of G. If % is a family of graphs
then N} (%) denotes G%g NE(G).
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Further, we denote the number of copies of G’ occurring as (not necessarily
induced) sub-k-graphs of G by N;(G'). Thus,

No(G') = 2 Ng(H)
where the sum is taken over all k-graphs

H=(V', E,) where E,,DE’.

There is a special k-graph on 2k vertices which will be important in what
follows. This k-graph is called a k-octahedron, or just octahedron, for short, and is
denoted by 0, = 0,(x,(0), x,(1), x,(0),x,(1), . . ., x,(0), x,(1)) = O,(%(¢)). The
vertices of 0 are the x,(¢;), 1=i=<k, ¢ €{0,1}. The edges of 0, consist of all
k-sets of the form {x,(e,), x,(¢,), . .., x, ()| € € {0,1}, 1=<i=<k}. Thus, 0,
has 2* edges.

Finally, we will call a k-graph an even partial octahedron (EPO) if it has the
same vertex as 0y, and has an edge set consisting of an even number of the edges
of 0,. We let 0} denote the set of all EPOs based on 0,, although occasionally we
will let 05 denote an individual EPO, as well.

3. STATEMENT OF THE MAIN RESULTS

We next list a set of properties which a k-graph G = G(n) might satisfy. Each of
the properties will contain occurrences of the asymptotic “little-oh” notation
o(1). However, the dependence of the different o(1)’s on the particular prop-
erties they refer to will ordinarily be suppressed. The use of these o(1)’s can be
viewed in two essentially equivalent ways.

In the first way, suppose we have two properties P and P’, each with
occurrences of o(1), so that P=P(o(1)), P'=P'(o(1)). The implication
“P=> P'"” then means that for each € >0 there is a § >0 so that if G(n) satisfies
P(8), then it must also satisfy P'(e), provided n > n(e).

In the second way, we can think of considering a family & of graphs G(n) with
n— . In this case, the interpretation of o(1) is the usual one as G = G(n) ranges
over &, with n— . As usual, “almost all” (abbreviated a.a) denotes a fraction
1+ o(1) of the elements of the set in question.

We next state a series of properties for k-graphs G(n) which are shared by
almost all random k-graphs G,,(n) on n vertices. (For G,,,(n), each possible
k-set is chosen to be an edge independently with probability 1/2).

Q,(s): For all k-graphs G'(s) on s vertices,
NEw(G'(9) = (1 + o(1))n’12 (1)

Q,:  For all k-graphs G'(2k),
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N (G'(2K)) = (1 + o(1))n 125 | ()

Q;:
NE (0D =1+ o(1))n™72. 3)

In other words, the number of induced EPOs O} occurring in G(n) is at most
(1+ o(1))n**/2, which is just the expected number occurring in the random
k-graph G,,,(n).

For our final properties, we need another definition. Let G=(V, E) be a
k-graph and let x, y € V. The sameness (k — 1)-graph G(x, y) is defined to be the
(k —1)-graph G'=(V’, E') with V' =V\{x, y} and edge set

[ — 14 V’)
E _{e E(k—l

Q,:  For almost all choices of x, y €V, the sameness (k — 1)-graph G(x, y)
of G(n)=(V, E) satisfies Q,, with k replaced by k — 1.
Qs For1=r=2k—1 and almost all x, yEV,

Xo(e' U {x}) = xo(e’ U ()]

NG(x, y)(Kik_l)) =1+ 0(1))nr/2(k:1) (4)
where G(x, y) is the sameness (k —1)-graph of G(n)=(V, E), and
K*1 denotes the complete (k — 1)-graph on r vertices, i.e., having all
the possible (,Z,) edges (and we use the convention that any set of
r <k —1 vertices forms a K* V).

Several implications among these properties are immediate or easily proved.
For example,

0,(2k)=Q0,> Q;and Q,(s +1)=> Q,(s) .

Our main result asserts that for s =2k, all of these properties are in fact
equivalent.

Theorem 1. For s =2k,

Q)= 0,202 0,2 05> 04(s) .

Hypergraphs which satisfy any one (and therefore all) of these properties we
call quasi-random.

4. BEGINNING THE PROOF

The proof of Theorem 1 will proceed by induction on k. The result for k = 2, our
initial case, is essentially a consequence of Theorem 1 in [1]. Here, we give a
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simpler proof (which avoids the eigenvalue arguments in [1]). A key idea in this
simplification is the following.
Suppose G(n) = (V, E) satisfies Q, for k =2, i.e.,
NE(O) =1+ o(1))n"72. (5)
For this case, an EPO 0 is just a sequence of four points y,, y,, ,, y; in
which an even number of the pairs y,y,, y,¥,, ¥,¥3, ¥3¥, are actually edges of
G(n).
Fact 1. For any 2-graph H = H(n),
NE(09) =1+ o(1))n*/2.
Proof. For vertices x, y €(V, H), define
Aglx, y)={vEV(H): xu(x, v) = xu(y,v)},

A(x, y)={v EV(H): xy(x,v) # xu(y, 0)} ,

Then
N (0%) = 2 {IAo(x’ Y)l(z) + |A1(x, Y)I(Z)}
X,y
n n 4
zg‘; {(2)(2) + (2)(2)} = (1+ o(1))n*2
where m,,, denotes the falling factorial m(m —1)---(m —t+1). ]

Therefore, if G(n) satisfies Q, then by Fact 1,
N&(0%) = (1+ o(1)n'/2 (6)

which implies that for almost all x, yEV,

|A(x, y)| = (1+ o(1)r/2, | A, (x, y)| = (1 + o(1))n/2. (7)
However, the first equality is exactly what is needed for G(n) to satisfy property
P,, which implies Q, as follows. For x, y €V, the sameness 1-graph G(x, y) =
(V', E’) has

V'=V\{x, y} and E'={z € V'] Xem(%, 2) = Xom (¥, 2)} -

However, property P, (see [1]) implies

|E'|=1+o(1)n/2. (8)
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For G(x, y) to satisfy Q, with 2 replaced by 1, we need to have for all 1-graphs
G'(2) on 2 vertices,

NE o (G'(2) = (1 + o(1))n%/2. (9)

However, there are exactly four possible (ordered) 1-graphs on {u, v} (depending
on whether or not u and/or v are “‘edges,” i.e., elements of E’. In each case, (9)
follows immediately from (8), and shows that P,=> Q,.

However, the proof that P, = P,(s) in {1] in fact shows that O, > Q,=> Q,(s),
which in turn implies Q,, and therefore Q, (we will see these arguments for
general k later in the article). This completes our discussion of Theorem 1 for the
case k =2.

Assume now for a fixed value of k=3 that Theorem 1 holds for all values less
than k. We will find it convenient to work with the modified statement:

Q;: For almost all choices of x, y €V, the sameness (k — 1)-graph G(x, y) of
G = (V, E) is quasi-random.

(By the induction hypothesis, Q,;< Q,.) By what we have already noted,
Theorem 1 will be proved if we can show:

0,20, 0:> 04(5).

This we now do.

5. Q> Q,
Assume (3) holds for G = G(n) =(V, E). We first need the following result.
Fact 2. For any k-graph F = F(n)

N:(0%) = (1+ o(1))n*72 . (10)
Proof of Fact 2. By Fact 1, we have (10) for k =2. Suppose it holds for all
values less than k. For H = 0 (x,(0), x,(1), ..., x,(0), x,(1)), consider the
sameness (k — 1)-graph H' = H(x,(0), x,(1)). Thus, e’ is an edge of H' if and
only if

xu(e' U {x,(0)}) = xgy(e' U tx, (1)}),

that is,

X (€)= xu(e’ U {x(0)}) + xu(e' U {x(1)}) +1 (mod 2). (11)

This implies by parity considerations that H' is in fact itself an EPO @} _, (on the
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vertex set (x,(0), x,(1),...,x,_,(0), x,_,(1)) in the sameness (k —1)-graph
F(x,(0), x,(1)).

Therefore,
N?(@’Z) = 2 N;:(xk(O),xk(l))(@;—l)
xk(O),xk(l)
= > (1+0(1))n* %2 by induction (12)
x(0),x4(1)
= (1+ o(1))n**/2
as claimed. s

Thus, by (3) we have in fact
N&w(03) =1+ o(1))n*72 (13)

which by (12) implies that for almost all choices of x = x,(0), y=x,(1) in V,

NGy (00 ) =1+ o(1)n** 772, (14)
Hence, by the induction hypothesis of Theorem 1 applied to (3), (14) implies that
almost all G(x, y) are quasi-random. However, this is just Q}. [
6. Q> Q,

Assume Q) holds for G = G(n)=(V, E). By the induction hypothesis (using

Q.(2k ~ 1) for (k — 1)-graphs, and the fact that Q,(s + 1)=> Q,(s)), we have for
almost all x, yEV,

NowpyKE D)= N (K )= (1 + o(1)n72'%1

for 1=r=2k — 1. Therefore, QO holds. ]

7. Q> Q9

Let s be arbitrary but fixed. Assume that G = G(n) = (V, E) satisfies Q. The
plan is the following. We first show that Q.= Q,. Since @, = @, then almost all
G(x, y) are quasi-random. By the induction hypothesis, using O, for (k —
1)-graphs, we get

N, n(KE D)= @+ o(1))n124 (15)

for any ¢t <s. This then will allow us to prove Q,(s) for k-graphs.
The argument is modeled on the corresponding argument for 2-graphs in [1].
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Let G'=G'(2k) be a fixed (arbitrary) k-graph on the vertex set V' =
{vy,..., 0y ). For 1=r=2k, define G'(r) to be the sub-k-graph of G’ induced
by V,={v,,...,v,}. Let N,:= N%(G'(r)). We will prove by induction on r that

N, =(1+ o(1))n,, 12" . (16)

For r =1, (16) is immediate. Assume for some r, 1=<r <2k, that (16) holds.
Define a:=(a,..., a,), where the «; where the o, are distinct elements of
[n]:={1,2,..., N}, which we take to be V, the vertex set of G = G(n). Also,
define €:=(e(e,), e(e,),...,¢€(e,)), where e(e;)€{0,1},z=(,",) and
e, e,,...,e, denotes a fixed ordering of the edges of K*~". Finally, define

fla, €)=

{ie[n]li#al, ..., e, and xs({i}Ue)= f(ei)’lsjs(ki1>}‘

Note that N,,, is the sum of exactly N, quantities f.(a, €). Namely, for each
embedding of G'(r) into G, say A(v,) = a,, 1 =u<r, f.(a, €) counts the number
of ways of choosing i € [n] so that if we extend A to V,_, by setting A(v,,,) =i,
and take e(e;) = xs({i}Ue;), 1=j=(,’,), then A becomes an embedding of
G'(r +1) into G. Also note that there are just n(,)2(*“) quantities f,(«, €), since
there are n,, choices for a and 2471) choices for €. Our next step will be to
compute the first and second moments of f,(«, €). To begin with, we have

f=—— S f(are)

gy
2 T e

— 53 f(a o) (17)

(€34 N
nn2 €

=;E(n—r) n-r

G 4 50
N2 2
since every vertex i # a, ..., «,, corresponds to a unique choice for e. Thus,
2 fla, &) =ni.,. (18)
«,€

Next, define
S, =2 e e)(fila, )= 1).

We claim that:

S, = NG(x,y)(ng_l)) (19)

»Y
where, as usual, G(x, y) is the sameness (k — 1)-graph with respect to the vertices
x and y. To see this, interpret S, as counting the number of ways of choosing
a=(a;,...,a)and e =(e(e,), ..., €(e: ) and two other (ordered) vertices x
and y in [n] so that
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xc({xyjUe)=ele)=xs({y}Ve), 1=j=(,l,).
Summing over all possible € reduces this to requiring just that
xo({x}Ue)=xs({y}Ue), 1=j=(:1,). (20)
Now, think of choosing x and y first. Then by (20), the required additional r
vertices a,, . . . , a, must form a K*~" in G(x, y). This proves (19).
Now, by the hypothesis (that O holds), we have
S, =(1+ o(1))n" 420 (21)

We now compute the variance:
2 (fla )=
=2 i) -2 f;
- QZE (e, e)(f(a, €)—1)+ az fila, €©) = (n = r)ng, /205 22)
=S, + Ry — (n— r)n(,+1)/2(":‘) = 0(n'+2)

by (21). Finally, since from our earlier observations that

No= 2 flae

N, choices
of (a, €)

then

N —NEP=| 2 (fle,e)=F)

N, terms

=N, > (f(a, €)—f)’ by Cauchy-Schwarz

=N, % (fla, €)= F) (23)
= o(N,-n"*?) by (22)
— 0(n2r+2)

by induction, i.e., (16). Consequently,
|Nr+1—Nrfr|=0(nr+1) (24)

and so,
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N, =Nf+o(n™)
=(1+ o(1)n,) /120 - (n = r) 1247 + o(n"* 1)
= (1+ o(1)ng,,, 20

as desired.
We can continue this argument as long as Qs applies, i.e., until r =2k — 1, at
which point we have

Ny = N5(G'(2K)) = (1 + o(1)n /25 . (25)

Since G'(2k) was arbitrary then (25) implies (2), and the proof that Q.= Q, is
complete.

Now, because we have shown Q,=> Q,=> Q, then Qg implies almost all
G(x, y) are quasi-random. This in turn implies (15) so that the preceding
argument can in fact now be continued to obtain Q,(s), as desired. This
completes the proof that Q.= Q,(s). n

We have now completed the proof of Theorem 1, since we have shown for any
s=2k,

0,
¢
0,(5)=> 0,> 0> Q;> 05> 0,(9). .

8. SOME CONSEQUENCES

Quasi-random k-graphs share a variety of other properties with random k-graphs,
which are typically weaker than quasi-randomness. In this section we will discuss
some of these.

Corollary 1. Let G = G(n)=(V, E) be a quasi-random k-graph and let XCV
with | X| = an, a >0. Then the restriction G[X] is quasi-random.

Proof. By Q,, the sameness graphs G(x, y) are quasi-random (k — 1)-graphs for
almost all choices of x, y € V. However, for x, y € X,

G(x, y)[X]= G[X](x, y) . (26)

By Theorem 1 of [1], the corollary holds for k =2. Assume for some value of
k=3 it holds for all values less than k. Thus, by induction G(x, y)[X] is
quasi-random for almost all choices of x, y € X. Therefore, by (26) and Q}, G[X]
is quasi-random. =

Note that by Corollary 1, the edges in a quasi-random k-graph are “well
distributed,” i.e., any an vertices must span (3 + 0(1)](%") edges. On the other
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hand, this condition is not enough to guarantee quasi-randomness for k = 3, as the

examples of Erd6s/So6s [3] and [4] show. In Section 9 we will give a different
construction.

Corollary 2. A k-graph G = G(n) is quasi-random if and only if

DI

z 0% _,=(V',E")

{z EE xc({z} U e')=0(mod 2)}| = (1+ o(1))n** /2.

(27
The proof of this corollary follows rather directly by considering property Q,.

Note that (27) is equivalent to saying that almost all 0;_, = (V’, E’) satisfy the
following property:

Qs:

{zEV‘ ZIXG({te’})EO(mod 2)} =1+ o(1)n/2. (28)

For a k-graph G = (V, E), define for x €V, the projection G(x) as follows.
G(x) is a (k — 1)-graph which has V' = V\{x} as its vertex set, and E' = {e' €
(D)) xo(e U {x}) =1} as its edge set.

Corollary 3. If G is quasi-random then so are almost all projections G(x).
Proof. Suppose G is a quasi-random. Since any projection G(z) has

NG, (0i_) =1+ o(1)n™ 72, (29)
then (28) implies almost all z satisfy

NELO ) =1+ o(1)n* 2.

However, this implies G(z) is quasi-random (by property Q,) for almost all z, as
claimed. L]

On the other hand, it is possible to give examples of k-graphs G which are not
quasi-random but for which all projections G(z) are quasi-random (see the next
section).

Corollary 4. Let G= G(n)=(V, E) be a quasi-random k-graph, and let t be
arbitrary but fixed. Then for almost all choices of distinct B,€ (,Y,), 1=i=<t,

{zEV|I:[1 XG({Z}UB,.)=1H =(1+ o(1)n/2" . (30)

This says roughly that the B, almost always behave independently when we try
to extend them simultaneously to become edges of G by adding a common vertex
z to each of them.
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Proof. Define B={b,,b,,...,b}=U’_ B,. For X={x;,x,,...,x,}CV,
let m(X) denote the number of z € V so that each k-set {z} U X, is an edge of G,
where X;={x,,...,x; } if and only if B;={b,,...,b, }, 1=j=<t Let

H = (V’, E') denote the k-graph formed by setting V' = BU {z,, z,} where z,, z,
are distinct vertices in V\B, and E’ consists of all k-sets {z,}UB,, 1=i=<2,
1=j=¢, and let H denote H[B U {z,}].

By this construction, we have

Ng(H) = |2 m(X) ) (31)

X|=r
where N;(H) denotes the number of (possibly noninduced) copies of H in G.
Since G is quasi-random then property Q,(r +2) for N5(H "), as H" ranges
over all k-graphs (V', E™) with E” D E’, implies
N (H)=(1+ o(1))n” 2% . (32)

Now, applying the Cauchy—Schwarz inequality to the RHS of (31), we obtain

Ez m(X) 3 = (1+ o(1)) nl (Ez m(X)) : (33)
Therefore, by (31), (32), and (33),
> m(X)=(1+o(1))n V2" . (34)
| X]|=r
However,
2 mX)=No(H™)= 2 Noo(B”) (35)

where B* = (B, E*) denotes the (k —1)-graph on B with edges B, 1=j=t. By
Corollary 3, we have

}Z) Ne@(B*) = (1 + o(L))n"*"/2" (36)
Putting these all together gives

2 m(X) g, =1+ o(1)n 2% .

fx|=r

Thus, by Cauchy-Schwarz, almost all the terms m(X) must essentially equal their
average, i.e.,

m(X) = (1+ o(1))n/2' (37)

holds for almost all choices of | X| = r. However, this is just the content of (30).
]
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In the next section we will show (30) is not sufficient to guarantee quasi-
randomness.

9. EXAMPLES OF NON-QUASI-RANDOM k-GRAPHS

We next construct several classes of k-graphs which, while not quasi-random,
behave in many ways like quasi-random k-graphs.

To begin, let G = G,,,(n) = (V, E) denote a random (k — 1)-graph on an n-set
V. Form the k-graph H* = H*(G) = (V, E*) by defining

E* = {e* € ( ‘k/>|e* contains an even number of edges of G} . (38)

Symbolically, for e* €(})

Xu-(€)=1+ 2 xs(e) (mod 2). (39)

"e(ke—1>

Fact 3. For almost all choices of G = G,,,(n), H*(z) is quasi-random for all
z€V.

Proof. The result is immediate for kK = 2. Assume k =3 and fix z € V. Note that
for e* = {z} Ue, xy-()(€) = xpy-(e*). We will estimate the probability that

Ny (05_) = (L + o(1))n* %2 (40)

We abbreviate the dependence

O%-1= 071 (x,(0), x,(1), ..., x,_1(0), x,_;(1))

by 0 _,(x(€)) where € = (¢, ..., €,_,), € €{0,1}.
Let

1 if all edges of O;_,(¥(€)) are edges of H*(z),
0 otherwise ,

EPO(i(¢)) = {

and let

X:= >, EPO(i(€)) .
(&)

Thus, X counts the number of EPOs O _, occurring in H*(z). We next estimate
the mean and variance of X.

E(X)= S EEPOGEN = S 5= N - (41)

1
() 2(€) 2
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Var(X) = E(X*) — E(X)?

- E( % EPO(f(E))EPO(iI(g;») _ ExY
X'
= ; E(EPO(x(€)) EPO(x'(€"))) — E(X)* @)

(€

= D E(EPO(x(€)EPO(x'(€")))

|Z(E) Nz’ (€ )| <k—1

+ > E(EPO(x(€)EPO(x'(€"))) — E(X)*.

[%(E)NE'(€)|=k—1
In the first sum, the two factors EPO(x(€)) and EPO(x’(€')) are independent,

since edges in H (and H(z)) depend only on edges (=(k — 1)-sets) in G; by (39)
each factor is equal to 1/2. Continuing (42) we have

Var(X)< 2, 1/4+ > E(X)?
_f,g{?) [#@)n# '@ )=k-1

< E(X)’+ ¢,n** ™V — E(X)*, ¢, constant (43)
= 0(n** 1y,
Thus, by Chebyshev’s inequality (see [5]),
Pr{|X — E(X)|=c}=Var(X)/c*, ¢>0. (44)

Setting ¢ = n**"*/log n we have

pr

where, of course, X = X(z). Summing over all z €V, we get

1 2
= n**"Ylog n} = 0(—0%:12> (45)
n

1
X - D) Rop-2)

2 Pr{

ZEV

1 _ log’
X(2) = 5 nuzy| =™ log n} = o( ‘:l%_z") . (46)

Thus, for k =3, almost all choices of G have
X(z)=(1+o(1))n* %2

for all z € V. However, this implies by property Q, of Theorem 1 that all H(z) are
quasi-random. This proves Fact 3. .

Corollary 5. Let H* =(V, E*) be as above. Then for almost all G = G,,,(n), if
a >0 is fixed then any an vertices of V span (3 + o(1))(%") edges of H*.
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Proof. By Fact 3, almost all choices of G result in all H*(z) being quasi-random.
By the remark following Corollary 1, each such H*(z) has its edges “well
distributed” in the above sense. This implies that the edges of H* are themselves
“well distributed,” i.e., any an vertices span (3 + o(1))(%") edges of H*. .

The same techniques used in the proof of Fact 3 can also be used to prove the
following (compare with Corollary 4).

Fact 4. Almost all H* = H*(G) have the property that for fixed t and almost all
choices of distinct B,€ (,¥,), 1=i=t,

{z € V|t=li[l xz-({z} UB,)) = 1}‘ =1+ o(1))n/2".

We now show that in spite of the preceding properties of H*(G,,,(n)), it is far
from being quasi-random. Let K,,, denote the k-graph on a set W of k + 1
vertices which has all but one of the k + 1 k-subsets of W as its edges.

Fact 5.
Ny(Kyy 1) =0.

Proof. Construct a matrix M with rows indexed by k-sets A, C W and columns
indexed by (k —1)-sets B; C W. Define

1 if A,CB,,

M(A;, B) = {0 otherwise .

Note that each column B; has exactly two 1's in it, since |[W\B;|=2, and
consequently there are just 2 choices with which to augment B, to get an A,.
Suppose now that in fact W C V induces a copy of K, , in H*, with the k-set
A, being the edge missing in K, ;. Since edges of H* depend only on the edges
of G they contain, we will replace M by M’, by restricting M just to those columns
e; which are edges of G. The sum of all rows of M’ is the vector (2,2, ...,2) of
all 2’s. Also, since all A,, i >1, are edges of K, ,, then each of these rows must
contain an even number of 1’s. Similarly, since A, is not an edge of K, , then its
row must contain an odd number of 1’s. However, this is clearly impossible (since
the total sum is (2,2,...,2)), so we conclude that K, ,, does not occur as an
induced sub-k-graph of H*. This proves Fact 5. [

Of course, the non-occurrence of any particular induced (k + 1)-vertex k-graph
in H* is a blatant violation of quasi-randomness (property Q,(k +1)). As we
have seen in Theorem 1, property Q,(2k) is enough to force a k-graph to be
quasi-random. In our next example, we exhibit a non-quasi-random k-graph
G*(n) which satisfies property Q,(k + 1). Whether this is possible for Q,(k +2) is
currently unknown. (This has now been settled. See note at the end of the
article.)

In forming G*(n) there are two possibilities, depending on the parity of k. For
k odd, we do the following. The vertex set V of G*(n) will consist of two disjoint
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sets A and A, each of size n/2. The edges of G*(n) consist of those k-sets e such
that [e N A| is even.

For k even, the construction is slightly more complex. In this case, V consists of
four disjoint sets A, A’, B, B’, each of size n/4. To form the edge set of G*(n) we
choose those k-sets intersecting both AU A’ and B U B’ (independently) with
probability 1/2, together with those k-sets e satisfying either:

leNAliseven, eNB=eNB' =;
or
leNBlisodd, eNA=eNA' =T;

In either case, G*(n) is not quasi-random since G*(n) contains a clique, i.e.,
complete k-graph, of size n/4.

Fact 6. G™(n) satisfies property Q,(k +1).

That is, for any k-graph H = H(k + 1) on k + 1 vertices,

NG (H) = (1+ o(1))n* 125+ (47)
Proof. We only treat the case of k odd. The case of k even is similar (though
slightly more complicated). Let H have vertex set W={w,, ..., w,,,} and edges
e(i,), - . ., e(i,) where e(i;) denotes the edge W\{w,.j}. Define W' = {w,.j|1 =j=

r} and W":= WA\W’, Suppose A: W—V induces a copy of H in G*(n). Parity
considerations show that there are only two possibilities:

If ris odd then A:W'—> A and A:W'— A ;
If ris even then A:W'—> A and A:W"'— A .

Thus, in either case there are (1+ 0(1))(n/2)*"" choices for A. This is just what
(47) claims, and therefore Fact 6 is proved. ]

10. EXAMPLES OF QUASI-RANDOM k-GRAPHS

In this section we give examples of several explicit classes of quasi-random
k-graphs. Many other similar classes can be constructed but we limit ourselves to
a few of the simplest here. Of course, almost all random k-graphs are quasi-
random.

The ‘“‘even intersection” k-graph I, (n) = (V, E) is defined as follows. For V we
take 2], the class of all subsets of [n]. A k-set {X,, ..., X,} € E if and only if

| X, N -+ N X,|=0(mod 2)
(where X;C V).
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Fact 7. [, (n) is quasi-random.

Proof. We will use the characterization of Corollary 4, and more specifically,
equation (28). Let X(¢;), ¢, €{0,1}, 1=j=2, 1=i=k —1, be distinct subsets
of [n]. We consider an octahedron 0,_, = 0,_,(X,(0), X;(1), ..., X,_,(0),
X, (1)) in I,(n). Recall that edges of O,_, are sets of the form
{Xi(e), ..., X,_1(&_1)}, €€{0,1}. For a subset ZC[n], the k-set
{Z,X,(e),...,X,_1(_,)} is an edge of I, (n) provided |ZN X,()N --- N
X,_1(&_,)| =0(mod 2). The total number of edges of I,(n) formed by Z together
with edges of 0, _, is just

2 1ZnX, ()N NX_ (e ,)|mod2, (48)

where a mod 2 is 0 if a is even, and 1 if g is odd. What we want to count is the
number of Z for which the expression in (48) is even, since in this case an even
number of terms in the sum must then be even.

First, note that any element x € X,(0) N X,(1) contributes to an even number
of terms in (48). Thus, we do not change the parity of the expression if we replace

{X,m) by X;(0):=X,(0NX,(1) ,
X,(1) by X;(1):= X,(I\X,(0)

Note that X;(0)N X/(1)=O, 1=i<k—1.
So, we have reduced our problem to counting the number of Z for which

2 lzZnXie)n - N X, (e_,)l (49)

is even. Fact 7 will be proved if we can shl?/Yv that for almost all choices of the

X;(¢;), the number of such Z is (1+o(1)) 7 =(1+ o(1))2"".
Let

s(e, - -y €_1) = IX{(Q) n--nN X;c—1(5k—1)l . (50)

Since all the 2“7 expressions on the RHS of (50) are disjoint, then the number of
such Z is just

211 (s(e))> 2 (51)

where the sum X’ is taken over all i(€) such that I, i(€) =0(mod 2), € denotes

(€., €_y), and 5:= X, s(€). The interpretation of (51) is simply that the sum

counts the number of ways of choosing a Z which has i(¢€) elements in X)(¢,) N

=N X;_,(&_,). (Of course, the expression in (48) is not affected if Z is

changed by any subset of [n\U, ; X,(¢;); this accounts for the factor 2",
However, observe that
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2 €
> 7 T (5 ) =0 (52)

i(€)

since this is just the value of the expression

H (x — I)S(E)

s(€)

(expanded using the binomial theorem) when x = 1. Thus, the expression in (5D,
summed over all i(e) with X_ i(€) even is just 1/2 of the total sum

S (55 =2 (59

i(€) € l(G

(again, by the binomial theorem), as required. Since almost all random choices of
the X;(e;) will result in distinct sets, then the preceding argument shows that (28)
holds, and consequently, 7, (n) is quasi-random. ]

We point out that it was shown by Bollobas and Thomason [6] that for k =2,

,(2,)(G(r))>0 for any r-vertex graph G(r), which points to the potential
quasi-randomness of L,(k).

For our second example we will define for primes p, a (generalized) Paley
k-graph P, (p) as follows. The vertex set of P,( p) is the set Z,, of mtegers modulo
p- A k-set {i,...,i} is an edge of P,(p) if and only it ip+t---+i, is a
quadratic residue modulo p.

Fact 8. P, (p) is quasi-random.

Proof. The proof will be a straightforward application of the following character

sum estimate of Burgess [7] (see also Weil [8]). Let x denote the nonprincipal
character modulo p given by

(a) = { 1 if ais a quadratic residue modulo p,
X —1 otherwise.

Then for distinct ay,...,a,inZ,

2 x(x+a) - x(x+a)=(s-1)vp. (54)

xEZp

(Of course, (54) holds when for nondistinct a;, provided the product is not
identically 1.) We will use (54) to verify property Q,. To do this, we need to
estimate the number of O} = 07 (x,(0), x,(1),...,x.(0),x,(1)) in P(p). It
follows from the definition of P,(p) that this number is just
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k
e 1
M@ =2 5 2(1+ T xw(e)+ - +x0e))
i=1 x(0),x,(1) b D €k
LS
= 1
24 x;(0),x;(1)
1 k
t5 22 2 I xx(0)+xy(e)+ -+ x,(e)
x;(0) i=2 x,(0),x,(1) €2 - - - €
1 k
+ ) Z 2 H x(x1(1) + x,(6,) + - + x,(€,))
x;(1) i=2 x;(0),x,(1) €2 - - - €k

< % ka + 0(p2k—1/2)

by (54). Thus, (3) holds for almost all choices of the x,(¢;), and Fact 8 is proved.
]

We remark that Fact 8 for k =2 follows from the results in Graham/Spencer
[9] (see also [6]). The techniques used in proving Fact 7 can also be used to show
that other related k-graphs are quasi-random, e.g., the k-graph having as its
vertices the n-sets of [2n], and edges {X,,..., X,}, X,€('%"), where | X, N
-+ N X,|=0(mod 2).

11. QUESTIONS

We conclude with several questions about quasi-random k-graphs we have not
resolved.

To begin with, regarding property Q,(s), how large must s be before Q,(s)
implies quasi-randomness? By Theorem 1, s = 2k is sufficient. By the example in
Section 9 (Fact 6), s=k+1 is not sufficient. In particular, does property
Q,(k +2) imply quasi-randomness? Rephrasing this question for k = 3: Is it true
that if a 3-graph G(n) contains all 5-vertex 3-graphs as induced 3-graphs asymp-
totically equally often, then the same is true for all 6-vertex 3-graphs? )

For each fixed ¢, is there a 2-graph G(n) so that N, (K,) =(1+ o(1)n’12D,
2=r=¢, but so that G(n) is not quasi-random? Or even stronger, so that
Ny (Kpp) # (1 + o(l))n”l/Z(';l)? (Here, K, denotes the (ordinary) complete
graph on r vertices.) We certainly believe that such G(n) exist but we do not at
present have a proof of this, even for the case ¢t = 5!

This problem is related to property Qs in the following way. If a 3-graph
H = H(n) has almost all its sameness 2-graphs H(x, y) satisfying Ny »(K,) =
(1+ o(1)n'12® for 1 <r =<5, then H is quasi-random. In particular, this implies
almost all H(x, y) are quasi-random, and so, for example, Ny, H(Ke) =1+
o()n%29 (or (1+ 0(1))n2*) for K, with fixed t) for almost all H(x, y).
However, this certainly does not imply that this should hold for any particular
H(x, y). Not surprisingly, we do not know the answer to these questions for
general k-graphs either.

In the spirit of [10] and [3], it would be of interest to have explicit estimates for
how non-quasi-random k-graphs deviate from the various properties Q,.

Perhaps even more fundamental is the problem of finding additional properties
which characterize quasi-randomness. For example, the following property FR
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has been suggested by Frankl and Rodl [11] as a possible candidate (in the case of

3-graphs).
Suppose G = G(n) = (V, E) is a 3-graph so that for every 2-graph H = (V, E’),

FR:

{eeE|<§)CE'}‘ = % N (K,) + o(rn’) . (56)

In other words, for any H which has cn’ triangles, about half of them correspond
to edges in G. (Of course, the extension of this property to k-graphs is clear.) At
present we cannot prove either FR = quasi-random (which we believe) or quasi-
random = FR (which we do not).

It also seems to the authors that it would be profitable to explore quasi-
randomness extended to simulating random k-graphs G,(n) for p #1/2, or more
generally, for p = p(n), especially along the lines carried out so fruitfully by
Thomason [12, 13]. It is the author’s belief that the surface of this interesting topic
has thus far only been scratched.

Note added in proof: It is now known that Q,(5) is not sufficient to imply
quasi-randomness of a 3-graph. Also, it has now been shown that property FR
(and its natural extensions to k-graphs) is equivalent to quasi-randomness. Details
will appear in Ref. 14. =
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