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1 Introduction

As circus and vaudeville performers have known for a long time, juggling is fun.
In the last twenty years or so this has led to a surge in the number of amateur
jugglers. It has been observed that scientists, and especially mathematicians and
computer scientists, are disproportionately represented in the juggling community.
It is difficult to explain this connection in any straightforward way, but music has
long been known to be popular among scientists; juggling, like music, combines
abstract patterns and mind-body coordination in a pleasing way. In any event, the
association between mathematics and juggling may not be as recent as it appears,
since it is believed that the tenth century mathematician Abu Sahl started out
juggling glass bottles in the Bagdad marketplace (3, p- 79).

In the last fifteen years there has been a corresponding increase in the appli-
cation of mathematical and scientific ideas to juggling (1], 121, [7], [11], [13], [18]),
including, for instance, the construction of a Juggling robot ([8]). In this article we
discuss some of the mathematics that arises out of a recent Jjuggling idea, sometimes
called “site swaps.” It is curious that these idealized juggling patterns lead to inter-
esting mathematical questions, but are also of considerable interest to “practical”
Jugglers. The basic idea seems to have been discovered independently by a number
of people; we know of three groups or individuals that developed the idea around
1985: Bengt Magnusson and Bruce Tiemann ([12], (11]), Paul Klimek in Santa
Cruz, and one of us (C. W.) in conjunction with other members of the Cambridge
University Juggling Association. A precursor of the idea can be found in [14].

Although our interests here are almost entirely mathematical, the reader inter-
ested in actual juggling or its history might start by looking at [21] and [19]; a
leisurely discussion of site swaps, aimed at jugglers, can be found in [12].

In the first section we describe the basic ideas, and in the second section we prove
the basic combinatorial result that counts the number of site swaps with a given
period and a given number of balls. This theorem has a non-obvious generalization
to arbitrary posets ([6]). Special cases of that result can be interpreted in terms
of an interesting generalization of site swaps; we find it delightful that a question
arising from juggling leads to new mathematics which in turn may say something
about patterns that jugglers might want to consider.

2 Juggling

As mathematicians are in the habit of doing, we start by throwing away irrelevant
detail. In a juggling pattern we will ignore how many people or hands are involved,
ignore which objects are being used, and ignore the specific paths of the thrown
objects. We will assume that there are a fixed number of objects (occasionally
referred to as “balls” for convenience) and will pay attention only to the times at
which they are thrown, and will assume that the throw times are periodic. Although
much of the interest of actual juggling comes from peculiar throws (behind the back,
off the head, etc.), peculiar objects (clubs, calculus texts, chain saws, etc.), and
peculiar rhythms, we will find that the above idealization is sufficiently interesting.

Suppose that you are juggling b balls in a constant rhythm. Since the throws
occur at discrete equally-spaced moments of time, and since in our idealized world
you have been juggling forever and will continue to do so, we identify the times ¢
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of throws with integers t € Z := {...,-2,-1,0,1,2,...}.

Since it would be silly to hold onto a ball forever, we assume that each ball
is thrown repeatedly. We also assume that only one ball is thrown at any given
time. With these conventions, a juggling pattern with b balls is described, for our
purposes, by b doubly-infinite disjoint sequences of integers.

The three ball cascade is perhaps the most basic juggling trick. Balls are thrown
alternately from each hand and travel in a figure eight pattern. The balls are thrown
at times

ball 1: ...—6,-3,0,3,6,...
ball 2: ...—5,-2,1,4,7,...
ball 3: ..—4,-1,2,58,...

Figure 1: A cascade

This pattern has a natural generalization for any odd number of balls, but can’t
be done in a natural way with an even number of balls — even if simultaneous
throws were allowed, in a symmetrical cascade with an even number of balls there
would be a collision at the center of the figure eight.

Another basic pattern, sometimes called the fountain or waterfall, is most com-
monly done with an even number of balls and consists of two disjoint circles of
balls.

The four ball waterfall gives rise to the four sequences {4n+a : n € Z} of throw
times, for a = 0,1,2,3.

The last truly basic juggling pattern is called the shower (Figure 3, following
page). In a shower the balls travel in a circular pattern, with one hand throwing
a high throw and the other throwing a low horizontal throw. The shower can
be done with any number of balls; most people find that the three ball shower is
significantly harder than the three ball cascade. The three ball shower corresponds
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Figure 2: A fountain (waterfall)

to the sequences

ball 1: ...—6,-5,0,1,6,7...
ball 2: ..—4,-3,2,3,8,9...
ball 3: o —2,-1,4,5,10,11...

We should mention that although non-jugglers are often sure that they have
seen virtuoso performers juggle 17 or 20 balls, the historical record for a sustained
ball cascade seems to be nine. Enrico Rastelli, sometimes considered the greatest
Jjuggler of all time, was able to make twenty catches in a 10-ball waterfall pattern.
Rings are somewhat easier to juggle in large numbers, and various people have been
able to juggle 11 and 12 rings.

Now we return to our idealized form of juggling. Given lists of throw times of
b balls define a function f:Z — Z by

flz) = { y if the ball thrown at time x is next thrown at time Y
z if there is no throw at time z.

This function is a permutation of the integers. Moreover, it satisfies f(t) > t for
all ¢ € Z. This permutation partitions the integers into orbits which (ignoring the
orbits of size one) are just the lists of throw times.

The function f(t) = ¢ + 3 corresponds to the 3-ball cascade, which could be
graphically represented as in Figure 4.

Similarly, the function f(x) = x+4 represents the ordinary 4-ball waterfall. The
three ball shower corresponds to a function that has a slightly more complicated
description. The juggler is usually most interested in the duration f(t) —t between
throws which corresponds, roughly, to the height to which balls must be thrown.

Definition: A juggling pattern is a permutation J:Z — Z such that f(t) >t for
all € Z. The height function of a juggling pattern is df (t):=f(t) —t.
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Figure 3: A shower

The three ball cascade has a height function df(t) = 3 that is constant. The
three ball shower has a periodic height function whose values are ...5,1,5,1,....
The juggling pattern in Figure 5 corresponds to the function

_ fz+4 ifz=0, 1mod3
flz) = {x+1 if z=2mod3

which is easily verified to be a permutation. The height function takes on the values
4,4,1 cyclically. This trick is therefore called the “441” among those who use the
standard site swap notation. It is not terribly difficult to learn but is not a familiar
pattern to most jugglers.

Remark

e We refer to df(t) as the height function even though it more properly is a
rough measure of the elapsed time of the throw. From basic physics the
height is proportional to the square of the elapsed time. The elapsed time is
actually less than df (t) since the ball must be held before being thrown; for
a more physical discussion of actual elapsed times and throw heights see [11].

e Although there is nothing in our idealized setup that requires two hands, or
even “hands” at all, we note that in the usual two-handed juggling patterns,

Figure 4: t = t+3
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that a throw with odd throw height df (t) goes from one hand to the other,
and a throw with even throw height goes from one hand to itself.

e If f(t) =t, so that df(t) = 0, then no throw takes place at time ¢. In actual
practice this usually corresponds to an empty hand.

e Nothing in our model really requires that the rhythm of the juggling pattern
be constant. We only need a periodic pattern of throw times. We retain the
constant rhythm terminology in order to be consistent with jugglers’ standard
model of site swaps.

¢ The catch times are irrelevant in our model. Thus a throw at time ¢ of height
df(t) is next thrown at time t + df(t) = f(t), but in practice it is caught
well before that time in order to allow time to prepare for the next throw.
A common time to catch such a throw is approximately at time f(t) — 1.5
-but great variation is possible. A theorem due to Claude Shannon (23], 171
gives a relationship between flight times, hold times, and empty times in a
symmetrical pattern.

Now let f be a juggling pattern. This permutation of Z partitions the integers
into orbits; since f(t) > t, the orbits are either infinite or else singletons.

Definition: The number of balls of a Juggling pattern f, denoted B(f), is the
number of infinite orbits determined by the permutation f.

Our first result says that if the throw height is bounded, which is surely true
for even the most energetic of jugglers, then the number of balls is finite and can
be calculated as the average value of the throw heights over large intervals.

Theorem It f is a bijection and df(t) = f(t) -t is a non-negative and
bounded then the limit

exists and is equal to B(f), where the limit is over all integer intervals

I={a,a+1,...,0} C Z.

Proof Suppose that df(t) < B for all t. If I is an interval such that
|| > B then any infinite orbit intersects I. The sum of df (t) over the

Figure 5: 441
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points in I lying in a given infinite orbit is bounded above by I and
below by |I| —2B.

If I is large enough then the sum of df (t) for ¢ € I can be made arbi-
trarily close to the number of infinite orbits of f; the singleton orbits
don’t contribute since df(t) = 0 for those orbits. Thus in the limit the
average of df over an interval {a,a +1,... ,b} of consecutive integers
must become arbitrarily close to the number of infinite orbits of the
permutation. u

Remark

The limit is clearly a uniform limit in the sense that for all positive € there is
an m such that if I is an interval of integers with more than m elements then
the average of df over I is within € of B(f).

As an example illustrating the theorem we note if f is the 441 pattern de-
scribed earlier, then the height function df(t) is periodic of period 3. The
long term average of df (t) over any interval approaches the average over the
period, i.e., (4+4+ 1)/3 = 3, which confirms what we already knew: the 441
pattern is a 3-ball trick.

The hypothesis of bounded throw heights is necessary. Indeed, if T'(0) =0
and, for nonzero t, T(t) is the highest power of 2 that divides ¢ then the
pattern f(t) = t + 2 - T(t) has unbounded throw height and infinite B(f),
as in Figure 6. More vividly: you can juggle infinitely many balls if you can
throw arbitrarily high.

3

Figure 6: Infinitely many balls

Periodic Juggling

From now on we want to juggle periodically. A juggling pattern is perceived to be
periodic by an audience when its height function is periodic in the mathematical
sense.
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Definition: A period-n Juggling patternis a bijection f : Z—Z such that df (t+n) =
df(t) for all t € Z.

If df is of period n then it might also have a period m for some divisor m of
n. If n is the smallest period of df then any other period is a multiple of n; in this
case we will say that f is a pattern of exact period n.

A period-n juggling pattern can be described by giving the finite sequence of
non-negative integers df(t) for t = 0,1,...,n — 1. Thus the pattern 51414 denotes
a period-5 pattern; by Theorem 1 it is a 3-ball pattern since the “period average”
of the height function df(t) is 3.

Which finite sequences correspond to juggling patterns? Certainly a necessary
condition is that the average must be an integer. However this isn’t sufficient. The
sequence 354 has average 3 but does not correspond to a juggling pattern—if you
try to draw an arrow diagram for a map f as above you’ll find that no such map
exists. This is also easy to see directly, for if df(1) =5 and df(2) = 4 then

f) =1+df(1) =6=2+df(2) = £(2)
and such a map isn’t a bijection.
Lemma K f is a period-n juggling pattern then

s=tmodn = f(s)= f(t) mod n.

Proof It df () is periodic of period n then the function f(t) =t+df(t)
is of period n modulo n. n

The Lemma implies that a juggling pattern f induces a well-defined injective,
and hence bijective, mapping on the integers modulo n. Let [n] denote the set
{0,1,...,n— 1} and let S,; denote the symmetric group consisting of all permuta-
tions (bijections) of the set [n]. Then for every period n juggling pattern f there is
a well-defined permutation 7 7 € Sn, that is defined by the condition

f(t) = 74(t) mod n, 1<t<n.

Theorem A sequence apa - - - a,_; of non-negative integers satisfies df (t) =
a; for some period-n Juggling pattern f if and only if a; + ¢ mod n is a
permutation of [n].

Proof Suppose that f is a juggling pattern and a; = df(t). Then
f(t) = 7¢(t) mod n so there is an integer-valued function g(t) such
F(t) = 74(8) + n- g(t) and

df(t)=ft) —t=ms(t) —t+n-g(t)

and
ar +t=df(t) +t=mp(t) mod n

and the stated condition is satisfied.
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Conversely, suppose that
apa1 © - - An-1

is such that a; +t is a permutation of [n]. If we define a; for all integers
t by extending the sequence periodically and then define f(t) = a; +1
then f is the desired juggling pattern. To see that f is injective note
that if f(t) = f(u) then ¢t = u mod n since f(t) is injective modulo n.
Then a; = a,. From f(t) = a; +t = f(u) = a, +u it follows that t = u
and f is injective as claimed. To show that f is surjective, suppose that
u € Z. Since t + a; mod n is a permutation of [n] we can find a a t such
that f(t) =t + ag; = wmod n. By adding a suitable multiple of n we
can find a t' such that f(#') = u. This finishes the proof of the fact
that any sequence satisfying the stated condition comes from a juggling
pattern. n

To see if 345 corresponds to a juggling pattern we add ¢ to the ¢-th term and
reduce modulo 3. The result is 021, which is a permutation, so 345 is indeed a
juggling pattern (in fact a somewhat difficult one that is quite amusing). On the
other hand, the sequence 354 leads, by the same process, to 000 which certainly
isn’t a permutation of [3].

3.1 Remarks for Jugglers Only

e The above description is geared towards the standard model: two hands
throwing alternately, in constant rhythm. In fact there could be any number
of hands and it is not necessary to assume that the rhythm is constant.

o The practical meaning of the throw heights 0, 1, and 2 in the standard model
requires a little thought. A throw height of 0 corresponds to an empty hand.
A throw height of 1 corresponds to a rapid shower pass from one hand to
another that is thrown again immediately. A throw height of 2 would ordi-
narily indicate a very low throw from a hand to itself that is thrown again
by that hand immediately. This is actually rather unnatural in practice; the
conventional interpretation ([11], [12]) is that a throw height of 2 is a held
ball.

o The paradigm for categorizing juggling patterns here is very interesting in
practice, although many of the patterns require considerable proficiency. Sev-
eral jugglers who have spent time in working on site swaps describe the same
gain in flexibility and conceptual power that mathematicians seem to report
from the use of well-chosen abstractions. The simplest non-obvious site-swap
seems to be 441; it is similar to, but not the same as, the common 3-ball
pattern of throwing balls up on the side while passing a ball back and forth
underneath in a shower pass from hand to hand. (The latter pattern is not
commonly performed with an even rhythm; if it is, it is 810.) The 3-ball
45141 pattern is also amusing, and the 4-ball 5551 pattern looks very much
like the 5-ball cascade. The range of feasible and interesting tricks seems to
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be unlimited; we mention the following sample: 234, 504, 345, 5551, 40141,
561, 633, 55514, 7562, 7531, 566151, 561, 663, 771, 744, 753, 426, 459, 9559,
831.

e A number of programs are available that simulate site swaps on a computer
screen, sometimes with quite impressive graphics. These programs take a
finite sequence of non-negative integers as input and dynamically represent
the pattern. The Internet news group rec.juggling is a source of information
on site swaps and various juggling animation software.

In order to find out which finite sequences represent juggling patterns we
start by noting that a period-n pattern induces a permutation on the first n
integers.

4 Counting Periodic Juggling Patterns

Let N(b,n) denote the number of period-n Juggling patterns f with B(f) = b. Our
next goal is to calculate this number. From the Jjuggler’s point of view it might
be more useful to count the number of patterns of exact period n and to count
cyclic shifts of a pattern as being essentially the same as the original pattern. Later
we will see that this more natural question can be answered easily once we know
N(b,n).

The basic idea in the determination of N(b,n) is to fix a permutation 7 € S,
and count the number of patterns f such that 7y = w. From the proof of the
previous theorem we have the formula

f&)=mrt)+n-gt) =n(t)+n-g(t), 0<t<n,

Thus we must count the number of functions g:[n] — Z such that if f is defined by
the above formula then df(t) > 0 and B(f) = b.

The number of balls of such a pattern f is equal to the average of df (t) over [n].
Thus

n—1 n--1
BU) =23 df(t)= = 3" (r(t) ~ t+n- g(t)).
t=0 t=0

Since m(t) is a permutation of [n] we see that this reduces to

B(f) =Y g(t).

Thus a function g determines a pattern with B (f) = b if the sum of its values is
equal to b.

The condition that df(t) > 0 is a little bit more intricate. Since
df(t) =n(t) —t+n-g(t)

we see that g(t) must be non-negative and also must be strictly positive whenever
m(t) < t.
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Definition: An integer t € [n] is a drop for the permutation 7 € S, if 7 (t) < ¢;
moreover, we define

de(t) = 1 iftisadrop form
T 10 if t is not a drop for 7.

Write G(t) = g(t) — d,(t) so that
f@t)=n(t)+n-d.(t) + n-G().

Let k be the number of drops of m. Then B(f) = b if and only if the sum of the
values of G is equal to b — k.

We can summarize this discussion so far as follows. The number N(b,n) of
period-n juggling patterns with b balls is equal to the sum over all permutations
7w € S, of the number of non-negative functions G(¢) on [n] whose value-sum is
b — k, where k is the number of drops of .

A standard combinatorial idea can be used to count the number of sequences of
non-negative integers with a given sum.

Lemma The number of non-negative n-tuples with sum z is

z+n-—1
(i)
Proof A standard “stars and bars” argument (in Feller’s terminology,
e.g., p. 38 of [9]) gives the answer. The number of such sequences is
equal to the number of ways of arranging n — 1 bars and x stars in a
row if we interpret the size of each contiguous sequence of stars as a
component of the n-tuple and the bars as separating components. The
number of such sequences of bars and stars is the same as the number

of ways to chose n — 1 locations for the bars out of a total of z +n — 1
locations, which is just the stated binomial coefficient. L

Let 6, (k) be the number of permutations in S,, that have k drops. By combining
the earlier remark with the lemma we arrive at

N(b,n) = Za (k) ("”’ ’;‘1)

Later it will be convenient to consider the number of period-n juggling patterns
with fewer than b balls. If this number is denoted N« (b,n) then, using a familiar
binomial coefficient identity, we find that

b—1 b-1n-1 n+a k-1
Voo = Y Nam =3 S am ("TITEL)
a=0

a=0 k=0
_ :Z;::én(k)g(n-i_z:l_ ) Zé(k)(n-i—b k—l)

In order to simplify this further we recall the idea of a descent of a permutation
and show that even though drops and descents aren’t the same thing, the number
of permutations with & drops is the same as the number with k descents.
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Definition: If = € S, then i € [n] is a descent of 7 if m(i) > n(i + 1) where
0 < ¢ <n—1. The number of elements of S,, with k& descents is denoted

"

We will write permutations as a list of n integers in which the i-th element is
(i), e.g.,

and is called an Eulerian number.

7(0)w(1)...w(n —1).

A descent in 7 is just a point in this finite sequence in which the next term is lower
than the current term.

Example. The permutation 10432 in S5 has three descents and two drops.

If 7 is a permutation then it can also be written in cycle form in the usual
way. In order to specify this form uniquely we write each cycle with its largest
element first and arrange the cycles so that the leading elements of the cycles are
in increasing order, where we include the singleton cycles.

Definition: If 7 € S, let 7 be the permutation that results from writing 7 in cycle
form, as above, and then erasing parentheses.

Example. The permutation 7 € Sg corresponding to the sequence 16037425
has a cycle decomposition (0162)(475) that has the canonical form (3)(6201)(765).
Therefore 7 is 36201754.

Note that the map taking 7 to 7 is bijective since m can be uniquely recon-
structed from 7 by inserting left parentheses before every left-to-right maximum
and then inserting matching right parentheses. This permutation of S,, is certainly

bizarre at first glance, but it plays a surprisingly crucial role in various situations
(see [5] or [15]).

Lemma The number of permutations of [n] with k descents is equal to
the number with k drops, i.e.,

8 (k) = <Z>

Proof A descent of # must lie inside a cycle of 7 since our conventions
guarantee that the last element in a cycle is followed by a larger integer.
By the meaning of the cycle decomposition 7 (namely, that elements
within cycles are mapped to the next element in the cycle) we see that
a descent of & corresponds to a drop of . Conversely, a drop in 7
must occur within a cycle (i.e., not in passing from the last element of a
cycle to the first) and corresponds to a descent in #. Thus the number
of permutations with k descents is equal to the number 6, (k) with k
drops. n

Example, again. The permutation 7 = 16037425 has drops at t = 2, 5, 6, 7, and
the permutation # = 36201754 has descents at i = 1, 2, 5, 6.
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The Eulerian numbers 6,(k) = (}) play a role in a variety of combinatorial
questions beyond drops and descents ([10], [15], [16]), although no notation seems
to be standard yet. We recall some of their basic properties. If a permutation
m = w(0)m(1)...m(n — 1) has k descents then its reversal #’ = =(n — 1)n(n —
2)...w(0) has n — k — 1 descents. Thus

&)= (amien) 2

By relating permutations of [n] to permutations of [n — 1] in the usual way, a more
involved combinatorial argument shows that

" k(" N e m—m (", @)
f k k-1

Using this recursion, it is easy to tabulate Eulerian numbers.
Finally, the Eulerian numbers arise as coefficients of the linear relations con-
necting the polynomials ™ with the polynomials (I:k)

n—1
n n\ [z+k
“-2 (00
k=0
This identity can by readily proved by induction using equation (2). It appar-

ently first appeared in [20] (see also [10] and [16]); in [15] it appears as a special
case of a much more general statement.

Worpitzky’s Identity.

Theorem The number of period-n juggling patterns with fewer than b
balls is b7, i.e.,
N< (b, n) = bn

Proof Our previous formula for N (b, n) was

N<(b,n)=§5n(k) (n+b;k—1> :§<Z><n+b;k—1>.

k=0 =0

Replace k by n — k — 1 and use (2) to get

-2 (1)

k=0

The claim is then an immediate consequence of Worpitzky’s identity.
[

The simplicity of the final result is surprising. The astute reader will note that
we could have avoided introducing the concept of descents by proving equations (1)
and (2) directly for the counting function é,, (k) for drops. It is a pleasant exercise to
provide a direct combinatorial argument. We took the slightly longer route above
because it is amusing and useful in proving the much more general result in [6].
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By the theorem there are (b+1)™ — b™ patterns of period n with exactly b balls
if cyclic shifts are counted as distinct. Let M(n,b) be the number of patterns of
exact period n with exactly b balls, where cyclic shifts are not counted as distinct.
Thus M(n, b) is probably the number that is of most interest to a juggler.

If d is a divisor of n then each pattern of exact period d will be occur d times
as pattern of length n. Thus

b+ =" = > dM(d,b).
d|n

By Méobius inversion we obtain the following corollary to the previous theorem.

Corollary 1
M) = =37 uin/d)(b+ 1) - b9,

dln

For instance, there are 12 genuinely distinct patterns with period three with
three balls. The reader may find it instructive to list all of them explicitly.

Several people have reproved Theorem 3 from other points of view. Richard
Stanley sent us a proof using results in [15]. Jeremy Kahn sent us a bijective proof
using a different labeling function for juggling patterns. Walter Stromquist sent
us an interesting bijective proof that uses a very curious relabeling of site swap
patterns. Adam Chalcraft ([4]) sent us a proof using ideas similar to those of
Stromquist. It is striking that the result seems to be of considerable interest to a
number of people.

Several of these proofs are shorter than ours, and some are much closer to being
more transparent “bijective” proofs. However, the proof given here, in addition to
using some interesting combinatorics, is the special case of the proof of the much
more general result in [6]. The basic motivation of that result is to replace the
set [n] with an arbitrary poset. For some posets we can give a natural interpreta-
tion of that more general result in terms of juggling patterns in which more than
one ball can be thrown at once, but we still haven’t been able to give a juggling
interpretation for arbitrary posets. After hearing of our results from Richard Stan-
ley, E. Steingrimsson reproved ([17]) the general results about posets using results
from his thesis. Among many other things, he generalizes the notions of descents
and drops (actually, in his terminology, a mirror notion he calls “exceedances”) to
certain wreath products of symmetric groups.

NOTE ADDED IN PROOF: In their recent preprint, “Juggling and applica-
tions to g-analogues,” Richard Ehrenborg and Margaret Readdy give a g-analogue
of our main result. In addition they generalize the ideas to multiplex patterns (in
which a hand can catch and throw more than one ball at once) and give applications
to ¢-Stirling numbers and the Poincare series of an affine Weyl group.

References

(1] H. Austin, A computational view of the skill of juggling, M.L.T. Artificial In-
telligence Laboratory, 1974.

(2] P.J. Beek, Juggling Dynamics, Free University Press, Amsterdam, 1989.



Juggling Drops and Descents 147

(3] J.L. Berggren, Episodes in the Mathematics of Medieval Islam, Springer Verlag,
1986.

(4] , A. Chalcraft, manuscript in preparation.

[5] D. Bayer and P. Diaconis, Trailing the Dovetail Shuffle to its Lair, Technical
Report, Department of Statistics, Stanford, 1989.

[6] J. Bubler and R. Graham, A note on the drop polynomial of a poset, in prepa-
ration.

[7] J. Bubler and R. Graham, Fountains, Showers, and Cascades, The Sciences,
Jan.-Feb. 1984, 44-51.

[8] M. Donner, A real-time juggling robot, IBM research preprint.

[9] W. Feller, Introduction to Probability Theory and its Applications, 34 edition,
John Wiley & Sons, 1968.

[10] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison
Wesley Co., 1989.

[11) B. Magnusson and B. Tiemann, The Physics of Juggling, Physics Teacher, 27
(1989) 584-589.

[12] B. Magnusson and B. Tiemann, A Notation for Juggling Tricks, Juggler’s
World, summer 1991, 31-33.

[13] C. Shannon, Scientific Aspects of Juggling, unpublished manuscript.

[14] C. Simpson, Juggling on Paper, Juggler’s World, winter 1986, 31.

[15] R. Stanley, Enumerative Combinatorics, Wadsworth & Brooks/Cole, 1986.
[16] D. Stanton, Constructive Combinatorics, Springer-Verlag, 1986.

[17] E. Steingrimsson, Permutation statistics of indexed and poset permutations,
Ph.D. dissertation, MIT, 1991.

[18] B. Summers, Juggling as performing mathematics, Co-Evolution Quarterly,
summer 1980.

[19] M. Truzzi, On keeping things up in the air, Natural History, 1979, 44-55.

[20] J. Worpitzky, Studien iiber die Bernoullischen und Eulerschen Zahlen, Journal
fiir die reine und angewandte Mathematik, 94 (1881) 103-232.

[21] K.-H. Ziethen and A. Allen, Juggling, The Art and its Artists, Werner Rausch
& Werner Liift Inc., 1985.

Reed College
Portland, OR 97202

Brandeis University
Waltham, MA 0225/



148 Buhler, Eisenbud, Graham, Wright

ATET Bell Laboratories
Murray Hill, NJ 07974

University of Liverpool
Liverpool, L69 3BX, England

5 Appendix

The main result of the preceding article is that there are b" Juggling patterns with
period n and fewer than b balls. After we described this in talks 5 years ago, sev-
eral people who heard the result came forward with combinatorial proofs that gave
explicit correspondences between such Juggling patterns and sequences of length n
of letters from a b-element alphabet. The ideas seem to have been discovered (and
rediscovered) repeatedly in the last few years. To our knowledge, the first such
proofs were due to Walter Stromquist and Richard Stanley, but Richard Ehrenborg
and Margaret Readdy, Adam Chalcraft, Michael Kleber and Jeremy Kahn, Jeremy
Rickard, and Hendrik Lenstra, Jr. have also all provided arguments of related (or
more general) results.

The OMP conference, and the reprinting of the article in this volume, give us a
welcome opportunity to try to synthesize some of these ideas and give an example
of a more combinatorial proof. In fact, the argument given here is wntentionally
“visual,” and we leqve the task of finding a more algebraic expression of the proof
to the interested reader.

We will actually consider a more general situation than in the paper. It seems
inflezible and unrealistic to assume that a Juggler will juggle a periodic pattern for-
ever without variation. So we drop the assumption of periodicity and merely assume
that the juggler has been Juggling forever, and will continue to Juggle forever. More
mathematically, we will consider Juggling patterns f:Z — Z that are permutations
(bijections), satisfying f(t) > t, such that f(t) =t is not necessarily periodic. These
will be put into one-to-one correspondence with certain 2-way infinite sequences.
The fact that there are b* periodic Juggling patterns will be seen to be an easy corol-
lary. We will also later briefly outline direct combinatorial arguments for that case.
We should also remark that in the article Juggling patterns f were allowed to have
fized points, i.e., times t such that f(t) =t. This correspond to a temporarily empty
hand, so that there was no throw at time t. It is easy to convert the results here
to that slightly more general class of permutations satisfying g(t) > t, since as f
ranges over all permutations that satisfy f(t) > t, the functions g9(t) = f(t) — 1
range over all permutations satisfying g(t) > t.

If f:Z — Z is a permutation then we let O(f) denote the number, possibly infinite,
of orbits of f. Let J denote the set of permutations 12 — Z such that O(f) is
finite, and such that f(t) >t for allt € Z. We think of J as all juggling patterns,
not necessarily periodic, that have a throw at every instance in time (i.e., do not
contain O-throws in the usual site swap notation ), extend infinitely in both directions
in time, and involve finitely many Juggling balls.

We wish to describe, or name, elements of J by certain 2-way infinite sequences
s:Z — Z7F of positive integers.  We let T denote the set of all bounded functions
s:Z — Z7" which take on their mazimum value infinitely often in both directions.
More precisely, if b = sup(s) := sup{s(t) : ¢ € Z} is the mazimum term in the
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sequence then the set {t : s(t) = b} has no mazimum or minimum. The set T can
be thought of as the set of all “throw sequences” in that the sense that s tells us
which ball to throw: as we will see, s(t) = k means that at time t the k'™ most
recently thrown ball is thrown again.

Theorem There is a natural one-to-one correspondence
Je=T

such that if f corresponds to s then O(f) = sup(s).

To prove this theorem we will exhibit mutually inverse mappings between J and T'.
Suppose that f € J is a juggling pattern with b balls (orbits). One way to visualize
[, used in the article, is to put integer pointst € Z on a number line and connect t
to f(t) by an arrow. An orbit is then a doubly unending connected sequence of such
(forward) arrows (e.g., see Figures 4 or 5 in the article). The first step in showing
how to associate a throw sequence s to f is to construct a more canonical picture
of f by arranging the positions of the arrows more carefully.

We observe that the permutation f determines a natural ordering of the orbits
between two throw times t and t+ 1, namely, by how recently the corresponding ball
has been thrown. To give some mild sop to those seeking an algebraic formulation
devoid of references to juggling, we could say that an orbit containing t' is the kM
most recent orbit between t and t+ 1 if f(t') > ¢ and the interval [t',t] intersects k
orbits of f.

The most recently appearing orbit is clearly the one containing t, and will be drawn
as the bottom arrow or “track.” The next most recent orbit will be then one con-
taining the largest t' < t that is not in the orbit containing t (e.g., t — 1 unless
fit—1) =1t). In any event, we put these orbits into b tracks lying above the real
line between integers and connect the tracks at the integers as required by the per-
mutation. The result is a canonical representation of our permutation that we will
call a “track diagram”; for instance the track diagram for the 3-ball site swap 3162
s as follows.

N
W s,
e

»

N e

W =
il

AR A
3 1 &6

Figure 7: The site swap 3162.

At each time t € Z (i.e., the times at which the juggling balls are thrown) the
ordering changes in a very specific way: one track becomes the most recent and the
previously more recent tracks have their level bumped up by one. In isolation, the
diagram of a typical transition might look like



150 Bubhler, Eisenbud, Graham, Wright

D

Figure 8: The transition D,

where the orbit that is k't most recent (between t —1 and t ) connects, or “plunges”
to the point t on the line. The idea of these transitions seems to be due to Ehrenborg
and Readdy; we will call the transition in which the kth level plunges the diagram Dy, .

With this canonical image of a juggling pattern, we can describe the desired map
from J to T. If f € J is a juggling pattern then define the corresponding doubly
infinite throw sequence sy by setting its t'h element s 7(t) to be equal to k if the
transition at t has diagram Dy. Thus 1 < k < b := O(f) and the sequences
contains positive integers bounded by b. Thus the s corresponding to the 3162 site
swap pictured above is as follows.

M“{
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>

N s

w-\—*"%

Figure 9: Throw sequence 31213121 ...
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As suggested above, non-jugglers could define the throw sequence more algebraically
by
s5(t) = #{orbits intersecting [f~'(t),t]}.

We need to check that the sequence sy produced from f takes on the mazimum
value b infinitely often in both directions. This is easy: the least recent orbit (highest
track) must plunge sooner or later and it can only plunge when s;(t) = b. Similarly,
the highest track rose to become the highest track at some point in the past when
ss(t) = b. Thus the sequence sy does contain b and must contain it infinitely often
in both directions.

Now we construct a map from T to J. Suppose that s € T is a throw sequence.
Imagine the tracks with all of the transition diagrams removed.

Figure 10: A track diagram with transitions removed

The construction of f from a given throw sequence s is immediate: if s(t) = k
then fill in transition diagram Dy at time t. The result is a canonical picture of
a permutation f, in J! Indeed, for a given t the track that starts up at t must
ultimately plunge since s(t') = b happens infinitely often to the right (at such points
the track must either move up one or after at most b such steps, plunge). If this
track plunges to the ground at time t', then f(t) =1t.

We have now constructed a map f — sy from J to T and s — f; from T to J.
These are mutually inverse. Indeed, if s is a sequence then the transition of fs at
time t is, by construction, Dy, for k = s(t); thus the throw sequence corresponding
to fs is just s. On the other hand, if f € J is a juggling pattern and we record the
transitions at each time t and then glue them into the incomplete diagram in the
previous figure then we certainly recover f. This finishes our “visual” proof of the
theorem.

Now we return to the very special case of periodic juggling: suppose that f(t)—t has
period n. This implies that the track diagram is invariant under the transformation
t — t +n, and that the throw sequence sy is periodic with period n. There are b"
sequences of length n on the alphabet {1,---,b}. Of those, (b—1)" of them do not
contain the value b. This recovers the ‘b7 result of the paper (slightly rephrased,
to account both for fact that there are exactly b balls, and to for the lack of throws
of height 0).

Corollary 2 There are b* —(b—1)" juggling patterns f: Z — Z that satisfy f(t) >
and have period n and b balls.

The argument presented at the OMP conference was the simplification of the proof
of the theorem obtained by, loosely speaking, “wrapping” the visualization around a
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circle; several points in the argument actually become easier, and the upshot is that
periodic juggling patterns are visualized as a collection of orbits around a central
planet. A closely related idea had been expressed completely combinatorially in an
elegant post by Jeremy Rickard to the Usenet news group sci.math.research. In this
posting periodic site swaps f were represented by sequences {a;} of length n, where
a; = f(i)~i. These sequences had average strictly less than b and were shown to be
in one-to-one correspondence with arbitrary sequences {s;} of length n, with values
in {0,---,b—1}.

The argument proceeded by by showing that both are in one-to-one correspondence
with an auziliary set of “walks” which we will now describe. Place n buckets in a
circle with balls in front of each. Walk around this circle exactly b times, picking
up balls whenever you don’t already have one, and placing balls in empty buckets
whenever you choose. We require that all balls have been placed in buckets by the
end of the B! circuit. The distance that each ball travels gives a valid {a;}. If we
write on each bucket the number of the circuit on which it received its ball, then one
gets a valid {b;}.

We leave it to the reader to wverify details, and to verify that this is essentially
equivalent to a wrapped version of the proof of the theorem.

Finally, we raise an open question. How can these ideas be used to describe, or
“name,” juggling patterns with infinitely many balls? If we drop the requirement of
bijectivity then there is a natural theorem, communicated to us by Hendrik Lenstra,
Jr. There is a correspondence between injections JZ — Z such that f(t) >t
(but with no requirement on finiteness of orbits) and (possibly unbounded) throw
sequences s:Z — ZT such that for all t there is a t' > t such that s(t) > s(t).
Injections could be thought of as modeling a Juggler whose skill increases with time;
as time goes on the juggler is allowed to pick up more and more Juggling balls and
toss them into the pattern.



