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A Remark on a Paper of Erdés and Nathanson
R. L. Graham'

A set A of integers is said to be an asymprotic basis of order h if every sufficiently large integer can
be represented as a sum of h (not necessarily distinct) elements of A. In a recent paper [EN], Erd6s and

Nathanson prove the following interesting result.

Theorem 1. Let A be an asymptotic basis of order h, and let f(n) denote the number of pairwise
disjoint representations of n as a sum of h elements of A. Suppose t=22 and and
c> log'1 (rreh - 1)). Then, if f(n) 2 ¢ log n for all sufficiently large n, then A can be partitioned

into the disjoint union of t sets, each of which is an asymptotic basis of order h.
A critical component in their proof is the following combinatorial result.

Theorem 2 [EN]. Suppose S(n) is a set of disjoint h-element subsets of w=1{1,2,3, ...} such that for
somec > log’1 (t"/(t'l —1)), we have |S(m)| 2 ¢ log n for all sufficiently large n. There there exists a

partition of @=C U - - - UC, such that S(n) contains h-element subsets of each C;, 1 <i <1, for all

sufficiently large n.

Erdds and Nathanson raise the question as to what extent the size condition on f(n) in Theorem 1
can be relaxed without affecting the validity of the conclusion. In particular, they suggest that theorem

could even hold under the much weaker assumption that lim f(n)=co. This question is still not
n-—joo
resolved. However, it would follow if the comesponding assumption, namely, lim [S(n)! = oo, were
n—Ioco

enough to guarantee the validity of Theorem 2. Our purpose in this note is to point out that this is not
the case, and in fact, the growth restriction they give for [S(n)| in Theorem 2 is (up to a constant
factor) best possible. For ease of exposition, we restrict our arguments to the simplest case, namely,

t=k=2.
Theorem. For each n, there exists a set S’ (n) of mutually disjoint pairs of integers so that:
(i) 18" (m)| > clog n forany ¢ < 1/log 2 as n—ros,

(ii) for any pariition of @=CUC,, infinitely many S’ (n) have either no pair from C| or no pair

from C,.
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f. The whole proof is based on the following simple idea. For a (rapidly) increasing sequence of

={1,2,..,2N]} ie, sets

Proo
integers N — oo, W€ will form many perfect matchings on [2N]:
.oy {xN.yN )} where all the entries in these N pairs are distinct arid between
hings M as possible so that any N-

M= ({x1.y1), (x2,2),
[ and 2N, inclusive. The plan will be to choose as few perfect maltc
element set X < [2N] is **split’’ by one of M’s, i.e., X hits each of the N pairs of M. This implies that

for any partition of w=C{UC,, some C; has ToF ﬂ[ZN]| < N, and therefore, this C; has no pairs in at

least one of the perfect matchings M. One trivial way to accomplish this is to choose all possible perfect

! N . .
matchings on {2N]. However, since there are (22:1 ) (EV_) VZ such perfect matchings then this

NI e
construction only yields families S (n) with 15" (m)| = (1+0(1)) 1—0;9-1%%1—. To obtain the claimed

result, we have to be more careful in forming our perfect matchings. To do this, we will choose them

randomly.
More precisely, we select ¢ perfect matchings M;, 1 < i < t, independently and uniformly at random.
For a fixed N-element set X < [2N], let us call M; **X-bad" if it does not split X. A simple calculation

shows that the probability of not splitting X is 1-2V / (21\’,") Thus, the probability that all the M are

t
X-badis{1-2" N . Since there are just N different X’s to consider then if we have
N N

t
2N 2V
1 @) <
1) N (ZN)
N
then with positive probability, for any N-set X < [2N], at least one M; is not X-bad. In particular, if £ is
chosen to satisfy (1), then there is some choice of perfect matchings M;, 1 < i €1, so that any N-set

X c (2N] is split by one of the M;. Finally, we form our desired S‘(n)'s by placing these M;

consecutively for each N, for a sequence of N’s rapidly tending to infinity.

An easy calculation shows that

NN log 4
T

>

is enough for (1) to hold. Inverting, we find that (i) holds. Of course, (ii) holds by the choice of the

various M; = M;(N), and the theorem is proved. =

We point out that similar arguments can be used to prove analogous results for general i and ¢. Our
result shows that the combinatorial approach used by Erdds and Nathanson cannot be pushed much

further in trying to prove the conjecture mentioned earlier, namely that lim f(n) = oo implies that A
n—oo

can be decomposed into t disjoint asymptotic bases of order h. It would be interesting in this case,
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however, to determine the largest value o (in place of 1/log 2) for which the theorem is valid. By

Theorem 1, and (i), it follows that

l/log 2 < a < 1/log 4/3 .
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