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EUCLIDEAN RAMSEY THEORY
R.L. Graham

INTRODUCTION

Ramsey theory typically deals with problems of the following type. We are given
a set S, a family F of subsets of S, and a positive integer r. We would like to
decide whether or not for every partition of § = Cy U --- U C, into r subsets, it
is always true that some C; contains some F' € F. If so, we abbreviate this by

r
writing S — F (and we say S is r-Ramsey). If not, we write S —/> F. (For a
comprehensive treatment of Ramsey theory, see [GRS90].)

In Euclidean Ramsey theory, S is usually taken to be the set of points in
some Euclidean space EV, and the sets in F are determined by various geometric
considerations. The case most studied is the one in which F = Cong(X) consists
of all congruent copies of a fixed finite configuration X C S = EN. In other words,
Cong(X) :A{;gX | g € SO(N)}, where SO(N) denotes the special orthogonal group
acting on E™.

Further, we say that X is Ramsey if, for all r, EN - Cong(X) holds pro-
vided N is sufficiently large (depending on X and r). This we indicate by writing
ENY — X.

Another important case we will discuss (in Section 11.4) is that in which F =
Hom(X) consists of all homothetic copies aX + T of X, where a is a positive real
and f € EV. Thus, in this case F is just the set of all images of X under the group
of positive homotheties acting on EV.

It is easy to see that any Ramsey (or r-Ramsey) set must be finite. A standard
compactness argument shows that if EN -Zs X then there is always a finite set
Y C EN such that Y =5 X. Also, if X is Ramsey (or r-Ramsey) then so is any
homothetic copy aX + ¢ of X.

GLOSSARY

EY - Cong (X): For any partition EY = C; U---UC,, some C; contains a set
congruent to X. We say that X is r-Ramsey. When Cong(X) is understood
we will usually write EY - X.

EN — X: Foreveryr, BV 1 Cong(X) holds, provided N is sufficiently large.
We say in this case that X is Ramsey.

11.1

r-RAMSEY SETS

In this section we focus on low-dimensional r-Ramsey results. We begin by stating
three conjectures.
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CONJECTURE 11.1.1

For any nonequilateral triangle T (i.e., the set of 3 vertices of T),
E* =5 T.

CONJECTURE 11.1.2 (stronger)

For any partition E* = Cy U Cs, every triangle occurs (up to congruence) in Cy,
or else the same holds for Cy, with the possible exception of a single equilateral
triangle.

The partition E2 = C; U C, with

Ci = {(zy) | —o<zr<oo,2m<y<2m+1,m=0,%1,£2,...}
C, = E*\(O;

into alternating half-open strips of width 1 prevents the equilateral triangle of side
V3 from occurring in a single C;. In fact, it is conjectured that except for some
freedom in assigning the boundary points (z,m), m an integer, this is the only way
of avoiding any triangle.

CONJECTURE 11.1.3
For any triangle T,

3
E* T.
In the positive direction, we have [EGM*75b]:
THEOREM 11.1.4

(a) E? 2T if T is a triangle satisfying:

(i) T has a ratio between two sides equal to 2sind/2 with § = 30°, 72°, 90°,
or 120° :

(ii) T has a 30°, 90°, or 150° angle [Sha76]
(iii) T has angles (o, 2, 180° — 3a) with 0 < a < 60°
(iv) T has angles (180° — «, 180° — 2, 3a — 180°) with 60° < a < 90°
(v) T is the degenerate triangle (a,2a, 3a)
(vi) T has sides (a,b,c) satisfying
a® — 2a*b? + a?b* — 3a2b%c? + b2 = 0

or
a*c® + b*a? + B — 5a?b i =0

(vii) T has sides (a,b,c) satisfying
¢ =a®+2b0® with a<2b  [Sha76]
(viii) T has sides (a,b,c) satisfying

a® + ¢ = 4V® with 3b® < 22> < 56>  [Sha76)
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(ix) T has sides equal in length to the sides and circumradius of an isosceles
triangle;

(b) E3 2T for any nondegenerate triangle T

(c) E? 2 for any nondegenerate right triangle T [BT96]
(d) E3 —1/2—>T, a triangle with angles (30°,60°,90°) [B6n93]
(e) E? —2/—>Q2 (4 points forming a square)

(f) E* —2/—>Q2 [Can96a]

(g) E® 2y R?, any rectangle [T6t96)

1 1
¢]

() B" — o

o for any n (a degenerate (1,1,2) triangle)

16
(i) E® -5 oot for any n (a degenerate (a,b,a + b) triangle).

It is not known whether the 4 in (h) or the 16 in (i) can be replaced by
smaller values. Other results of this type can be found in [EGM*73], [EGM*75a],
[EGMT75b], [Sha76], [CFGI1].

The 2-point set X5 consisting of two points a unit distance apart is the simplest
set about which such questions can be asked, and has a particularly interesting
history (see [Soi91] for details). It is clear that

2
E' X, and E? -3 X,.

To see that EZ —» X5, consider the 7-point Moser graph shown in Figure 11.1.1.
7

All edges have length 1. On the other hand, E* —/+ X5, which can be seen by an
appropriate periodic 7-coloring (= partition into 7 parts) of a tiling of E? by regular
hexagons of diameter 0.9 (see Figure 1.3.1).

FIGURE 11.1.1
The Moser graph.

Definition: The chromatic number of E", denoted by x(E™), is the least m
m
such that E™ — X5.

By the above remarks,
4<x(E) <T.

These bounds have remained unchanged for over 50 years.
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Some evidence that x(E?) > 5 (in the author’s opinion) is given by the following
result of O’Donnell:
THEOREM 11.1.5 [0’D00a], [0’D00b]
For any g > 0, there is 4-chromatic unit distance graph in E* with girth greater
than g.
Note that the Moser graph has girth 3.
PROBLEM 11.1.6
Determine the ezact value of x(E?).
The best bounds currently known for E” are:
(6/5+0(1)" <x(E") < (3+o(1))"
(see [FW81], [CFGI1]).
A “near miss” for showing Y(E?) < 7 was found by Soifer [S0i92]. He shows
that there exists a partition E* = C; U--- U Cy where C; contains no pair of points
at distance 1 for 1 < ¢ < 6, while C7 has no pair at distance 1//5.
The best bounds known for x(E?) are:
6 < x(E’) < 15.
The lower bound is due to Nechushtan [Nech02] and the the upper bound is due
to R. Radoicic and G. Téth [RT03] (improving earlier results of Székely/Wormald
[SW89] and Béna/Téth [BTI6)).
See Section 1.3 of this Handbook for more details.
11.2 RAMSEY SETS
Recall that X is Ramsey (written EY —» X)if, for all 7, if EN = C, U---UC, then
some C; must contain a congruent copy of X, provided only that N > No(X,r).
GLOSSARY

Spherical: X is spherical if it lies on the surface of some sphere.

Rectangular: X is rectangular if it is a subset of the vertices of a rectangular
parallelepiped.

Simplex: X is a simplex if it spans EXI-1,

THEOREM 11.2.1 [EGM*73]
If X andY are Ramsey then so is X x Y.

Thus, since any 2-point set is Ramsey (for any r, consider the unit simplex Sorg1 in
E?" scaled appropriately), then so is any rectangular parallelepiped. This implies:

THEOREM 11.2.2

Any rectangular set is Ramsey.
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Frankl and R6dl strengthen this significantly in the following way.

Definition: A set A C E” is called super- Ramsey if there exist positive con-
stants ¢ and € and subsets X = X (N) C EV for every N > No(X) such that:

(i) |X]<e™;
(i) |Y| < |X|/(1+ €)™ holds for all subsets Y C X containing no congruent copy
of A.
THEOREM 11.2.3 [FR90]

(i) All two-element sets are super-Ramsey.

(ii) If A and B are super-Ramsey then so is A x B.

COROLLARY 11.2.4

If X is rectangular then X is super-Ramsey.
In the other direction we have:

THEOREM 11.2.5
Any Ramsey set is spherical.

The simplest nonspherical set is the degenerate (1,1, 2) triangle.
Concerning simplices, we have the result of Frankl and Rédl:

THEOREM 11.2.6 [FRY0]
Every simplex is Ramsey.

In fact, they show that for any simplex X, there is a constant ¢ = ¢(X) such that
for all r,
Eclogr _7‘_> D'

which follows from their result:

THEOREM 11.2.7
Every simplez is super-Ramsey.

It was an open problem for more than 20 years as to whether the set of vertices
of a regular pentagon was Ramsey. This was finally settled by Kiiz [K{i91] who
proved the following two fundamental results:

THEOREM 11.2.8  [Kii91]

Suppose X C EYN has a transitive solvable group of isometries. Then X is Ramsey.

COROLLARY 11.2.9

Any set of vertices of a regular polygon is Ramsey.

THEOREM 11.2.10 [Kfi91]

Suppose X C EN has a transitive group of isometries that has a solvable subgroup
with at most two orbits. Then X is Ramsey.
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COROLLARY 11.2.11
The vertex sets of the Platonic solids are Ramsey.

CONJECTURE 11.2.12
Any 4-point subset of a circle is Ramsey.

Kfiz [Kti92] has shown this holds if a pair of opposite sides of the 4-point set
are parallel (i.e., form a trapezoid).

Certainly, the outstanding open problem in Euclidean Ramsey theory is to
determine the Ramsey sets. The author (bravely?) makes the following:

CONJECTURE 11.2.13 ($1000)
Any spherical set is Ramsey.
If true then this would imply that the Ramsey sets are exactly the spherical sets.

11.3

SPHERE-RAMSEY SETS

Since spherical sets play a special role in Euclidean Ramsey theory, it is natural
that the following concept arises.

GLOSSARY

SN(p): A sphere in EV with radius p.
Sphere-Ramsey: X is sphere-Ramsey if, for all 7, there exist N = N (X,r) and
p = p(X,r) such that
SN(p) 5 X.
In this case we write SV (p) — X.

For a spherical set X, let p(X) denote its circumradius, i.e., the radius of the
smallest sphere containing X as a subset.

Remark. If X and Y are sphere-Ramsey then sois X x Y.

THEOREM 11.3.1 [Gra83]
If X is rectangular then X is sphere-Ramsey.

In [Gra83], it was conjectured that in fact if X is rectangular and p(X) = 1
then SN (1+¢) — X should hold. This was proved by Frankl and Rédl [FR90] in
a much stronger “super-Ramsey” form.

Concerning simplices, Matousék and Rédl proved the following spherical ana-
logue of simplices being Ramsey:

THEOREM 11.3.2 |[MR95]
For any simplex X with p(X) = 1, anyr, and any € > 0, there exists N = N(X,r,¢)
such that
SN1+e¢ 5 X
The proof uses an interesting mix of techniques from combinatorics, linear
algebra, and Banach space theory.
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The following results show that the “blowup factor” of 1 + € is really needed.

THEOREM 11.3.3  [Gra83]
Let X = {z1,...,&m} CEN such that:

(i) for some nonempty I C {1,2,...,m}, there exist nonzero a;, i € I, with
Z a;x; =0 € EN
iel
(ii) for all nonempty J C 1,
Z a; # 0.
jeJ

Then X s not sphere-Ramsey.

This implies that X C S¥(1) is not sphere-Ramsey if the convex hull of X
contains the center of S™(1).

Definition: A simplex X C EV is called exceptional if there is a subset A C X,
|A| > 2, such that the affine hull of A translated to the origin has a nontrivial
intersection with the linear span of the points of X \ A regarded as vectors.

THEOREM 11.3.4 [MR95]
If X is a simplex with p(X) =1 and SN(1) — X then X must be exceptional.

It is not known whether it is true for exceptional X that S™(1) — X. The
simplest nontrivial case is for the set of three points {a,b,c} lying on some great
circle of SV (1) (with center 0) so that the line joining a and b is parallel to the line
joining o and c.

We close with a fundamental conjecture:

CONJECTURE 11.3.5
If X is Ramsey, then X is sphere-Ramsey.

11.4

EDGE-RAMSEY SETS

In this variant (introduced in [EGM*75b], we color all the line segments [a, b] in E"
rather than coloring the points. Analogously to our earlier definition, we will say
that a configuration E of line segments is edge-Ramsey if for any r, there is an
N = N(r) such any r-coloring of the line segments in E contains a monochromatic
congruent copy of E (up to some Euclidean motion). The main results known for
edge-Ramsey configurations are the following:

THEOREM 11.4.1 [EGMT75b]
If E is edge-Ramsey then all edges of E must have the same length.

THEOREM 11.4.2 [Gra83]
If E is edge-Ramsey then the endpoints of the edges of E must lie on two spheres.
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THEOREM 11.4.3 [Gra83]
If the endpoints of E do not lie on a sphere and the graph formed by E is not
bipartite then E is not edge-Ramsey.

It is clear that the edge set of an n-dimensional simplex is edge-Ramsey. Less
obvious (but equally true) are the following.

THEOREM 11.4.4 [Can96b]

The edge set of an n-cube is edge-Ramsey.

THEOREM 11.4.5 [Can96b)

The edge set of an n-dimensional cross polytope is edge-Ramsey.

This set, a generalization of the octahedron, has as its edges all 2n(n — 1) line
segments of the form [(0,0,...,%+1,...,0), (0,0, ...,0,£1,...,0)] where the two +1’s
occur in different positions.

THEOREM 11.4.6 [Can96b]
The edge set of a regular n-gon is not edge-Ramsey if n =5 orn > 7.

Since regular n-gons are edge-Ramsey for n = 2, 3, and 4, the only undecided
value is n = 6.

PROBLEM 11.4.7 Is the edge set of a reqular hexagon edge-Ramsey?

The situation is not as simple as one might hope since as pointed out by
Cantwell [Can96b]:

(i) If AB is a line segment with C as its midpoint, then the set F| consisting
of the line segments AC' and C'B is not edge-Ramsey, even though its graph is
bipartite and A, B, C' lie on two spheres.

(ii) There exist nonspherical sets that are edge-Ramsey.

PROBLEM 11.4.8 Characterize edge-Ramsey configurations.

It is not clear at this point what a reasonable conjecture might be. For more
results on these topics, see [Can96b] or [Gra83].

11.5 HOMOTHETIC RAMSEY SETS AND DENSITY

THEOREMS

In this section we will survey various results of the type EY - Hom(X ), the set
of positive homothetic images aX + £ of a given set X. Thus, we are allowed to
dilate and translate X but we cannot rotate it. The classic result of this type is
van der Waerden’s theorem, which asserts the following:

THEOREM 11.5.1 [vdW27]
If X ={1,2,...,m} then E - Hom(X).

(Note that Hom(X) is just the set of m-term arithmetic progressions.)
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By the compactness theorem mentioned in the Introduction there exists, for
each m, a minimum value W(m) such that

{1,2,...,W(m)} -2 Hom(X).

The determination or even estimation of W (m) seems to be extremely difficult.
The known values are:

m |1]2]3]4] 5
W(m) [1[3]9]35] 178

The best general result from below (due to Berlekamp—see [GRS90]) is
Wp+1)>p-2°, pprime.

The best upper bound known follows from a spectacular result of Gowers [Gow01]:
22m+9

Wi(m) < 22*

This settled a long-standing $1000 conjecture of the author. This result is a
corollary of Gowers’s new quantitative form of Szemerédi’s theorem mentioned in
the next section. It improves on the earlier bound of Shelah: [She88]:

m levels

The following conjecture of the author has been open for more than 30 years:

CONJECTURE 11.5.2 ($1000)
For all m,
W(m) < om”

The generalization to E" is due independently to Gallai and Witt (see [GRS90]).

THEOREM 11.5.3
For any finite set X C E",
EY —s Hom(X).

We remark here that a number of results in (Euclidean) Ramsey theory have
stronger so-called density versions. As an example, we state the well-known theorem
of Szemerédi.
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GLOSSARY

N: The set of natural numbers {1,2,3,...}.
8(A): The upper density of a set A C N is defined by:

6(A) = lim sup [A0{1,2,..,n} :

n—» o0 n

THEOREM 11.5.4  (Szemerédi [Sze75))
If AC N has 6(A) > 0 then A contains arbitrarily long arithmetic DProgressions.

That is, ANHom{1,2,...,m} # § for all m. This clearly implies van der Waerden’s
theorem since N = Cy U ---U C, = max 6(C;) > 1/r.
K

Furstenberg [Fur77] has given a quite different proof of Szemerédi’s theorem, us-
ing tools from ergodic theory and topological dynamics. This approach has proved
to be very powerful, allowing Furstenberg, Katznelson, and others to prove den-
sity versions of the Hales-Jewett theorem (see [FK91]), the Gallai-Witt theorem,
and many others. Recently, Gowers has given a strong quantitative version of
Szemerédi’s theorem:

THEOREM 11.5.5 [Gow01]

For every k > 0, any subset of 1,2,...,N of size at least N(loglog N)=“*) contains
a k-term arithmetic progression, where c(k) = 927,

There are other ways of expressing the fact that A is relatively dense in N
besides the condition that §(A) > 0. One would expect that these could also be
used as a basis for a density version of van der Waerden or Gallai-Witt. Very little
is currently known in this direction, however. We conclude this section with several
conjectures of this type.

CONJECTURE 11.5.6 (Erdss)

If A C N satisfies ), 1/a = oo then A contains arbitrarily long arithmetic progres-
a€A
sions.

CONJECTURE 11.5.7 (Graham)

IfACNXNuwith 3, 1/(z* +y®) = oo then A contains the 4 vertices of an
(z,y)€A
azes-parallel square.

More generally, I expect that A will always contain a homothetic image of
{1,2,...,m} x {1,2,...,m} for all m.

Finally, we mention a direction in which the group SO(n) is enlarged to allow
dilatations as well.

Definition:  For a set W C E¥, define the upper density 6(W) of W by

-  lim s m(B(o, R) N W)
W) = limsup = BB

k
where B(o, R) denotes the k-ball {(zl, .,ay) €EF

z? < R? } centered at, the
1
origin, and m denotes Lebesgue measure.
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THEOREM 11.5.8 (Bourgain [Bou86])

Let X CEF be a simplex. If W C E* with (W) > 0 then there exists to such that
for allt > to, W contains a congruent copy of tX.

Some restrictions on X are necessary as the following result shows.

THEOREM 11.5.9 (Graham [Gra94])

Let X C E* be nonspherical. Then for any N there exist a set W C EN with
0(W) >0 and a set T C R with §(T) > 0 such that W contains no congruent copy
of tX for anyt e T.

Here § denotes lower density, defined similarly to § but with lim inf replacing
lim sup.
It is clear that much remains to be done here.

11.6 VARIATIONS

There are quite a few variants of the preceding topics that have received attention
in the literature (e.g., see [Sch93]). We mention some of the more interesting ones.

ASYMMETRIC RAMSEY THEOREMS

Typical results of this type assert that for given sets X; and X, (for example), for
every partition of EN = C; U (s, either C; contains a congruent copy of Xy, or Cy
contains a congruent copy of X». We can denote this by

EY -2 (X1, X,).

Here is a sampling of results of this type (more of which can be found in [EGM* 73],
[EGMT75a], [EGM*75b]).

(i) E? 2, (T2, Ts) where T is any subset of E? with i points, i = 2,3.

(i) E? 2, (P», Py) where P, is a set of two points at a distance 1, and Py is a
set of four collinear points with distance 1 between consecutive points.

(iii) E3 = (T,Q?) where T is an isoceles right triangle and Q2 is a square.
(iv) E? 2 (P2,Ty) where P is as in (ii) and T} is any set of four points [Juh79].
(v) There is a set Ty of 8 points such that

E? it»(P;,, Ts) [CT94].

This strengthens an earlier result of Juhdsz [Juh79], which proved this for a
certain set of 12 points.
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POLYCHROMATIC RAMSEY THEOREMS

Here, instead of asking for a copy of the target set X in a single C;, we require only
that it be contained in the union of a small number of C;, say at most m of the C;.
Let us indicate this by writing EY — X.
m

(i) ¥EY = X then X must be embeddable on the union of m concentric spheres
m
[EGMT73].

(ii) Suppose X; is finite and EYN — X;,1<i <t Then
m;

EVY —— X;xX;x---xX; [ERS83].

mama: My

(iii) If X is the 6-point set formed by taking the four vertices of a square together
with the midpoints of two adjacent sides then E* 4 Xg but E? s Xs.

(iv) Tf X is the set of vertices of a regular simplex in EV together with the trisection
points of each of its edges then

E* 4 X¢ but E? — Xe.

It is not known if E? - Xe. Many other results of this type can be found
in [ERS83].

PARTITIONS OF E™ WITH ARBITRARILY MANY PARTS

7
Since E? —~ P, where P is a set of two points with unit distance, one might ask
whether there is any nontrivial result of the type E*> s F when m is allowed to
go to infinity. Of course, if F is sufficiently large, then there certainly are. There
are some interesting geometric examples for which F is not too large.

THEOREM 11.6.1  [Gra80a]

For any partition of E” into finitely many parts, some part contains, for all a > 0
and all sets of lines L1, ..., L, that span E", a simplex having volume o and edges
through one vertex parallel to the L;.

Many other theorems of this type are possible (see [Gra80a]).

PARTITIONS WITH INFINITELY MANY PARTS

Results of this type tend to have a strong set-theoretic flavor. For example:

RO .
E* —/» T3 where Ty is an equilateral triangle [Ced69]. In other words, E* can
be partitioned into countably many parts so that no part contains the vertices of
an equilateral triangle. In fact, this was recently strengthened by Schmerl [Sch94b]
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who showed that for all V,
Ng
EN s Ts.
In fact, this result holds for any fixed triangle T' in place of T3 [Sch94b]. Schmerl
also has shown [Sch94a] that there is a partition of EV into countably many parts

such that no part contains the vertices of any isoceles triangle.
Another result of this type is this:

THEOREM 11.6.2 [Kux]

Assuming the Continuum Hypothesis, it is possible to partition E? into countably
many parts, none of which contains the vertices of a triangle with rational area.

We also note the interesting result of Erdés and Komjath:

THEOREM 11.6.3 [EK90]

The ezistence of a partition of E* into countably many sets, none of which contains
the vertices of a right triangle is equivalent to the Continuum Hypothesis.

The reader can consult Komjath [Kom97] for more results of this type.

COMPLEXITY ISSUES

S. Burr [Bur82] has shown that the algorithmic question of deciding if a given set
X C NxNcan be partitioned X = C;UC,UCj so that z,y € C; = distance(z,y) >
6,i=1,2,3, is NP-complete. (Also, he shows that a certain infinite version of this
is undecidable.)

Finally, we make a few remarks about the celebrated problem of Esther Klein
(who became Mrs. Szekeres), which, in some sense, initiated this whole area (see
[Sze73] for a charming history).

THEOREM 11.6.4 [ES33]

There is a minimum function f : N — N such that any set of f(n) points in E?
in general position contains the vertices of a convex n-gon.

This result of Erdés and George Szekeres actually spawned an independent
genesis of Ramsey theory.
The best bounds currently known for f(n) are:

2n — 95
2241« < 2.
+ _f(n)_(n_3)+

The lower bound appears in [ES35], while the upper, improved by G. Téth and

P. Valtr from the original (,°", "), appears in [TV98].

CONJECTURE 11.6.5

Prove (or disprove) that f(n) =2"2+1,n > 3.
(See Chapter 1 of this Handbook for more details.)
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11.7 SOURCES AND RELATED MATERIAL

SURVEYS

The principal surveys for results in Euclidean Ramsey theory are [GRS90], [Gra80b],
[Gra85], and [Gra94]. The first of these is a monograph on Ramsey theory in
general, with a section devoted to Euclidean Ramsey theory, while the last three
are specifically about the topics discussed in the present chapter.

RELATED CHAPTERS

Chapter 1: Finite point configurations
Chapter 13: Geometric discrepancy theory and uniform distribution
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