Journal of Difference Equations and Applications, © 1999 OPA (Overseas Publishers Association) N.V.

1999, Vol. §, pp. 71-95 Published by license under
Reprints available directly from the publisher the Gordon and Breach Science
Photocopying permitted by license only Publishers imprint.

Printed in India.

On the Limit of a Recurrence Relation

RL. GRAHAM2* and CH. YAN®!

aAT&T Labs, 180 Park Avenue, Room C221, Florham Park, NJ 07932, USA;
SCIMS, New York, NY 10012, USA

(Received 1 September 1998 In final form 26 September 1998)

In this paper we study the asymptotic properties of the sequence of integers g(n),
defined by the following recurrence relation:

g+ 1) = (1+-")em],

n—a

where o >0 and | x| denotes the largest integer not greater than x. For any o >0, the
limit g(n)/n* exists. We prove that for a=2, this limit is always rational. For a=3,
we give some sufficient conditions which guarantee that the limit is rational.
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1 INTRODUCTION

In this paper we study sequences of integers {g(n)} defined by
recurrence relations of the following form:

g+ 1) = | (1+:-2=)gtn) . ()

n—a

where o > 0 and | x| denotes the largest integer not greater than x.

* Corresponding author.
TThe work was performed while the second author was visiting AT&T Labs.
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72 R.L. GRAHAM AND CH. YAN

Such recurrences often arise in the study of extremal combinatorial
structures, e.g., the Turan number for hypergraphs [1] and the dis-
tribution of values of angles determined by coplanar points [2].

In this paper we investigate asymptotic properties of such recur-
rences, focusing in particular on the cases o =2 and 3. It is not hard to
show that lim, . ., g(n)/n® always exists (see Section 2). If we start
with the initial condition g(b) =c (this is no loss of generality), we let
G(a, a, b, ¢) denote that limit. We prove that for a =2, G(a, a,b,¢) is
always rational. The case of a.=3 is more complicated. We provide
some sufficient conditions on the initial values so that Gla,a,b,c) is
rational. We are not able to prove that G(a, a, b, ¢) is ever irrational,
although we believe this is almost always the case. At the end we
present some computational data, as well as a number of conjectures
based on this data.

2 ASYMPTOTIC BEHAVIOR

FACT  Given any sequence of integers defined by the recurrence (1) with
Jfixed numbers a and o, the limit lim,, _, oo(g(n)/n*) exists.

Proof 1If

fin) = )

(n—a)*’
then the recurrence becomes

(a7

(n+1-a)fin+1) = [(1 + )(n—a)o‘f(n)J,

n—a

That is,

fin+1) = [(n T a)“(SW)ﬂn)J :
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Since a >0, we have

a 1 \¢
1+—<(1+ .
n—a n—a

Thus

L+ 1=

fint1) (n+1-a)*

< fln).

It is clear that f{n) > 0. Since {f{n)} is a bounded and monotonically
decreasing sequence, the limit lim, _, . f{r) exists. It follows immedi-
ately that

tim £ — fim fn) (2 ~ “)az lim f{n).

n—oo pe n—oo n—00

3 THE LIMIT OF g(n)/n™ IN THE QUADRATIC CASE

In this section, we determine the limit G(2,a,b,c) where a,b,c are
integers. Note that G(2,4,b,¢)=G(2,1,b — a+1,c¢), so without loss
of generality, we may assume a=1. The recurrence relation (1)

becomes
sre )= (14555 )s| = [ qem] @

n—1 n

It is sometimes convenient to consider the sequence h(n) = g(n)/(3).
The corresponding recurrence relation for h(n) is

(3 )]
2
It is clear that for the sequence with initial value g(b)=c,
lim, _,  in) =2G2, 1, b, ).

3)

THEOREM 1 For any rational number plq where gcd(p,q)=1, there
exist integers b, ¢ such that the limit 2G(2,1,b,c)=p/q. That is, for the
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sequence determined by the recurrence (2) and initial value g(b)=c,
lim, . g(n)/(5) = p/q.

Proof Obviously if g(b)=0 for some b, then G(2,1,5,0)=0;
if g(b) = (3), then 2G(2,1,b, (%)) = 1. From the recurrence relation
(3), one notices that if Am)=1+hi(n), then hn+1)=
L+ ("3 (m)]/("3Y) = 1+ hi(n + 1). Without loss of generality, we
may assume 0 < p/g < 1.

Let B=(q — 1)/2. If

then

P g(n)J

:e<n> +§(n—l)+xn+ [pn—;—26+ 2 J

n—1

Let ¢, be the residue class of pn+28=pn — 1(modg), where
0<c,<q. We denote this writing c¢,=mod(pn+208,¢q). If
|2x,/(n — 1)| < 1/q, and x,, > 0 when ¢, =0, then

{pn+2ﬂ+ 2x,,J _ {pn#—ZBJ :pn+2ﬂ—c,,

q n—1 q q
Therefore
p/n 8 pn+208—c,
1)== “(n—-1
gln+1) q<2)+q(n )+ X, + 7
n+1 I}
:‘Z( ) )+~()+xn+1,
where
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Note that |x,,:|<|x,|+3, and if n is large enough, then
|2x, , 1/n| < 1/g. Thus we can continue the iteration and obtain the
following expressions:

2 —tn — Cn
g(n+2):‘l—)<n+ >+E(n+1)+xn+/6 R +B CH,

g\ 2 q q q

_pmtaqy B Tl

gln+ )_q( 5 >+q( +qg—1)+x,+ ,Z,; =

Since ged(p,g) =1, 8= — 1)/2, and e, =pn+28=
pn — 1(mod g), then ¢, ranges over all the residue classes of ¢ as n
goes over g consecutive integers. Therefore

nt+g—1

Z ¢=0+1+-+(q-1)=q(g—1)/2

and

This implies that the constant terms {x,} are periodic. In particular, x,,
is bounded. Let b be an integer of the form kg + 1 which is larger than
2gx, for all x,,, and let

g(b) :’5’ (g) +§(b— 1).

Then we have

(n) p Bn-1 .
OeE e

and the theorem is proved.

THEOREM 2 For any rational number p/q € (0,1) with ged(p,q)=1,
there exists an integer ¢ < (‘151) such that for the sequence determined

by the recurrence relation (2) with initial value g(q+1)=c, the limit
limy—.oc g(n)/ (5} equals p/q.
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Proof Keep the notation in the proof of Theorem 1. Let

plg+1 8
g(q+1)=0=5( ’ >+E(q),

where [G=(q—1)/2. Note that Xg+1=0. We prove that for
i=1,2,3,...,q,

{p(q+i)+2ﬂ+ 2xg+i J _ {p(q+i)+2ﬁJ _pg+i)+28—¢
q g+i—1 q q

3

where ¢; =mod(p(g + i) + 28, g) = mod(pi — 1, g). It is enough to show

that
G 2xgyi
—+—"—1 =0,
[q q+l—1J
fori=1,2,3,...,q.

In the following, we use induction to prove that the following
formulas hold fori=1,2,...,q:

0< Ci 2Xg4i
Tq q+i-—1
and
=
Xpei ==Y (B-¢). 4)
qj=1

Fori=1, x; =0, and it is obvious that 0 < ¢,/g < 1.

Suppose that the formulas (4) are valid for i — 1. We prove that they
are valid for i.

Assume that rg<ip—1<(t+1)q, where p—1, 2p—1,...,
(-Dp-1<tg<ip—1,I<i,and lp—tg=y. Thus c;=y+({—p<
q—1. We have

Y (B-e)==(-1)y/2<0
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and
i-1
S B-c)=(-DB—(i=Dy—pli—Di-1-1)/2>0.
=1
Therefore
Ci 2X44i
g q+i—1
1 . (I-1)y
> - p — ——1
—Q<y+0 p q+i—1)
q qg+i—1
Y. 9
g g+i—1
>0
and

1_<ﬁ+ﬂ)
qg qg+i-1

1
>1-2 (y+ G-+

:m((q_y—(i—l)m(q—1+l)—(i_1)(p_1_y))

(i—l)(q—1—2y—p(i—1—1)))
g+i—1

Zm(q_l_(i_l)l’)

> 0,
where we use the fact that y+ (- )p<qg-—1.
Therefore,
qg q+i—1
and consequently,
1<
Xgtitl = —Z(ﬁ - ¢).
93

This finishes the induction step.
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The only thing left to check is that x, >0 when ¢,=pn—1=
0(modg). This can be done as follows: When pn—1=0(mod g),
(p—D+((mn—-1)p—-1)=pn—-2=qg—1(modg). This implies ¢, +
¢,—1=¢qg—1=23. By the same reason, we have 22:11 (8—c;)=0.
Therefore x, =x, 4, =0.

In conclusion, the sequence determined by the recurrence relation

(2) and initial value
+1
glg+1) = =5 (q ) ) +8

yields the limit g(n)/(;) — p/q as n — oo, which proves the theorem.

DEFINITION A value g(b) =c is said to be reducible if there exists a
preceding value g(b — 1) = ¢’ such that

— b /
C = b_zC.

Otherwise the initial value g(b) = c is said to be irreducible.

THEOREM 3 For any rational number pjq € (0, 1) where gcd(p, q) # 1,
there exists an integer ¢ such that the initial value g(g+ 1)=c is
irreducible and the limit 2G(2,1,q+ 1,¢) =p/q.

Proof There are two cases.

Case 1 gcd(p,q)=2. We may assume that p=2p', g=2q’, and
ged(p’,g")=1.

By Theorem 2, we know that the initial value
g+1 qg' -1 Tyt ’
—(q)=p'(2 1 -1
glg+1) = q< ) )+ 27 (@) =r'(2¢"+1)+q

will yield the limit g(n)/(5) — p/q.

LEMMA 3.1 Letp=2p', q=2q" and gcd(p’, q') = 1. The initial value
plg+1\ ¢’ +1
== -1
glg+1) q( ) )+ 2 9

also yields the limit p/q.




ON THE LIMIT OF A RECURRENCE RELATION 79

Proof of Lemma 3.1 This is the case that

g =2(3) + 21+

g(n+1)=§( ) )+§( ) + X,

where 5’ = (¢ + 1)/2, and

!
—C
T

Xnel = y
w427 | ife, =0,

if ¢, # 0,

where x,, < 0 when ¢, =0.

In this case,

n+q—1 .
_Zi:nq ('B—c’)_lz()

xn+q -
q

The fact that the numerical conditions are satisfied by the initial
value

since 8 = (g + 1)/2.

_Pfa+]1 q+1

can be checked similarly as in the proof of Theorem 2.
Returning to the proof of Theorem 3, we have

ga)=p2¢-1)+q = glg+1)=p2¢+1)+4 +1,

gg)=pr2d -1)+q -1 = glg+1)=pQ2¢+1)+4 - 1.

Therefore
plg+1\ g +1 Lim ,
ﬂw=5 5 )T —(@)—1=p2¢"+1)+q

is an irreducible initial value, and it yields the limit p/q.

Case 2 ged(p, q) =k >2. We may assume that p=kp', g=kq’, and
(r'.q)=1.
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From Theorem 2 and the proof of the Case 1, we know that for an
integer c, if

plg+1 q —1 plg+1 q +1
m==- —_— <e<L<= - —1=M

then g(g+ 1) =c yields the limit g(n)/(%) — p/q. There are k integers
between m and M.

Since
k / ! 7
g(q)=5(p(kq -D+4-1) =
k
ga+ ) =50'kf +1)+4 -1 =m
and

k / / !
g =50k - +4+1)-1 =
k
ga+)=50'(kd +1)+4 +1)> M,

there are at most k — 1 initial values g(g + 1) =c that are reducible,
where m < ¢ < M. Therefore there exists an integer ¢ € [m, M] such that

8(q+1)=cis irreducible and yields the limit g(n) /(%) — p/q.

It is easy to check that: (i) for the initial values 2(3)=0,1,2, the
limits of g(n)/(3) are 0,0,1, respectively, and (ii) for any integer b, i
&(b) <b -2, then the limit is 0. Combining this with Theorems 2 and
3, we conclude that for any rational number plg€]0,1), there is an
integer ¢ < (‘1;1) such that the initial value g(g+ 1) = is irreducible
and yields the limit p/q. This proves the following theorem.

THEOREM 4 For the sequences determined by the recurrence relation

(2) and the initial values g(m)=0,1,2, ..., (%) — 1, the limits of
g(n)/ (5)(n — 0o) are exactly the rational numbers

g, O0<p<g<m,

appearing n the increasing order. In other words, 2G(2,1,m, k) is the
kth fraction in the ordered list { p/q: 0 < p < g < m} for0 <k < ('5’)
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4 THE LIMIT OF g(n)/n” IN THE CUBIC CASE
In this section, we discuss the case that a = 3. Similar to the quadratic

case, G(3,a,b,¢)=G(3,2,b—a+2,c). Without loss of generality, we
may assume a=2. The recurrence relation for the sequence {g(n)}

becomes
s = |(1425)e0| - [Hem] @

Let h(n) = g(n)/(3). The corresponding recurrence relation for /(n) is

("3 )]
3
For a sequence satisfying recurrence relation (5) and initial value
g(b)=c, we have lim,, _, ., #(n) =3'G(3,2, b, ¢).

DEFINITION  An ordered pair of integers (p, ¢) is said to be balanced
if there exists an integer 3 such that

29

> (28-c)=0,

i=1

where ¢; =mod(p(}) +38,9). In this case we say that (p,q) is
balanced at 3.

THEOREM 5 For any rational number p/q, if the pair (p, q) is balanced
at an integer (3, then there exist integers b and ¢ such that for the
sequence determined by the recurrence (5) and initial value g(b)=c,

lim,_. g(n)/(5) = p/q.

Proof Without loss of generality, we may assume that 0 <p/g< 1.
If for some integer n,

=2 (D) + 20243,
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then

gn+1) :g(';) +§(n—2)+xn—l— E(Z) +¥+n3f"2J.

Let ¢, = mod(p(5) + 38, 49). If |3x,/(n—2)| < 1/q, and x, > 0 when-
ever ¢, =0, then

n
gn+1) :’é(’;) +§(n—2)+xn+p(2)4+q3ﬁ~j
2"+ 2004,
where
28 — ¢y

Xp+l = Xp + q

Note that |x,, | < |x,| +2. If n is large enough so that |(3x,, +
6g)/(n—1}] < 1/q, then we may repeat the iteration 2q steps, and
obtain the following expression:

2 28~cy 28— c
g(n+2):§<’”3' >+§(n)+xn+ e 25 qc“,

+ n+2q— 12 .
g(n~|—2q):§<n q) g(n+2q 2)+x, + Z ﬁqc.

Since (p,q) is balanced at 8, S"'(28—¢;) =0, and hence
Xn424=Xn. Therefore x, is periodic. In particular, x, is bounded.
Choose b to be an integer such that b > 3¢x, + 64 for all x,,, and let

_P(b\N B,
—q(3)+q(b 2) + x,

where x,, is the smallest positive number such that ¢ is an integer and
x; > 0 whenever ¢;=0.
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The sequence {g(n)} determined by the recurrence relation (5) and
the initial value g(b) = ¢ yields the limit g(n)/ () — p/q as n— oo, as
required.

THEOREM 6 For any pair of integers (p, q), let i=gcd(q,6). Then the
pair (tp, tq) is balanced for some integer t if and only if the pair (ip, iq) is
balanced.

Proof Ttis clear that if (p, g) is balanced at 3, then (¢p, tg) is balanced
at 1.

Suppose that (tp,tg) is balanced at J, where ¢ > i=gcd(q, 6).
Let e, =mod(p(3).q). Then re, = mod(p(3),7q). Assume that =
kt+~, where 0<vy<t If d,=mod(e,+k,q), then td,+~v=
mod(tp () + 38, 1q).

Assuming that (¢p, tq) is balanced at 3, we have

2q—1
> " (tdi+ ) = 498
i=0
or
2g—1
t Z di +2qv = 440. (6)
i=0

We discuss the different cases according to the value of ged(g, 6).

(i) gcd(g,6)=1. In this case, Z?Za Yd = png) =0 (modg), and
d;; y=d; as e; ;= e;. Therefore 2¢ divides S22t d; and

201 .
t(——z’z(; ’) + =28

It follows that 23 =~ (mod 7). Since v = 33 (mod 1), we then have y=0

and §=kt/3. Thus
(o i\ _ 2%kt
2q 3°



84 R.L. GRAHAM AND C.H. YAN

which implies that k=3¢ for some integer ¢. Note that since
d; = mod(e; + k,q) = mod(p(}) + 3¢,¢), then the above formula can
be written as

2g-1 i
Z mod(p(2> + 3¢, q) = 4q/.

That is, (p, g) is balanced at £.
(ii) ged(g, 6) = 3. In this case, Y4 d; = p(%) (mod ¢). Hence 7 d;
is a multiple of ¢/3, and Zfz"gl di=2 Z?;OI d;. The formula (6) can be

written as
-1
t _Z;:o "1+ 3y =685
q/3

It follows that 65=3~ (mod¢). Combined with 38=+v (mod ), we
have y=0 and a=kt/3. Substituting a=k#/3 into the formula (6),
we obtain

2g-1

> 3d; = 4qk.
i=0
That is,
2g—1 i
> mod<3p <2> + 3k, 3q) = 4qk.
i=0

This proves (3p, 39) is balanced at k.
(iii) ged(g, 6) =2. In this case .4 d; = p(%¥) = 0(mod g). Thus

2q-1 4
t(—Zi:; dl) + 2y =44.

It follows that 43 =2 (mod #). Combined with 33 =~ (mod ), we have
2y=0(mod ). If y=0, then 8 =kt/3 and

This implies that k =3/ for some integer /, and (p, g) is balanced at /.
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If v=1/2, then 36 =kt + t/2; hence the formula (6) becomes

2g-1
2k 41
2N di+2g=4g- 7=
ZO: +2q =4q- =
It follows that 3 divides 2k + 1. Write k=3/+ 1 for some integer /.
We have
2g—1
D (2di+1)=2g-2020+1).
=0
Note  that  2d;+ 1 =mod(2p(}) + 2k,29) + 1 = mod(2p(})+
2031+ 1) +1,29) = mod(2p(}) +3(2/+ 1),2¢). This implies that
(2p, 2q) is balanced at 2/+ 1.
(iv) ged(g,6)=6. Again, 321 d; is a multiple of ¢/3. Thus the
formula (6) can be written as

2q-1
t(ZZ,:/Oa l) + 67 =124

It follows that 128 =6~ (mod ). Combined with 38=+(mod¢), we
have 2y=0(mod ¢). If y =0 and 3 =kt/3, then

2g—1

3 di=4gk.
i=0

Note that 3d; = mod(3p(}) + 3k,3q). This implies that (3p,3q) is
balanced at k. If y=1/2 and 8=kt + t/2, then the formula (6) becomes

2g—1
t (2k + 1)t
tS di+2g-~=4q 0
2 ity =41
2! 2k +1

= 2) d+2=4q
i=0

2g—1 .
i 2k+1
2 = 4 . —_—
= ;:0 mod<2p(2> + 2k + 1,2q) q 3

2g-1 .
i
= E mod (6p<2> + 302k + 1),6q> =4q(2k + 1),

i=0

i.e., (6p, 6g) is balanced at 2k + 1.
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TABLE I Balanced pairs for small initial values

Initial value Limit H(b, c) Balanced pair
g@=1 4/23 (4,23) is balanced at 4
gd)=2 6/13 (6,13) is balanced at 4
g4)=3 2/3 (6,9) is balanced at 1
gd=1 6/109 (6, 109) is balanced at 28
g(5)=2 4/23 (4,23) is balanced at 4
&(5)=3 4/15 (12,45) is balanced at 14
g(5)=>5 6/13 (6, 13) is balanced at 4
g(5)=6 4/7 (4,7) is balanced at 2
g(5)=7 2/3 (6,9) is balanced at 1
g(5)=9 6/7 (6,7) is balanced at 1
g2(6)=7 15/47 (15,47) is balanced at 14
g(6)=9 9/22 (18,44) is balanced at 9
g(6)=11 11/2t (33,63) is balanced at 10
gl6)=15 3/5 (3, 5) is balanced at 1
g6)=17 4/5 (4, 5) is balanced at 1
g6)=19 10/11 (10, 11) is balanced at 2

Example 1 Denote by H(b,c) the limit of g(n)/(;) where {g(n)} is
determined by the recurrence relation (5) and the initial value g(b) = c.

Table I gives some balanced pairs for small initial values.

We do not currently know the values of H(5,4), or H(S, 8). It seems
that the limits are not given by any balanced pairs.

DEFINITION 2 An ordered pair of integers (p, q) is said to be almost
balanced if there exists an integer 3 such that

2g—1

28— ¢ .
S a0 < i< 2,6=0)
i=0

where ¢; = mod(p () + 38, 9).

COROLLARY 6.1 If a pair of integers (p,q) is almost balanced, then
there exist integer b and ¢ such that H(b, c) = p/q.

Proof From the proof of Theorem 35, the formula

2B_Cn
q

Xpt1 = Xp +
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is valid if |3x,/(n —2)| < 1/q and x,, > 0 whenever ¢,,=0. On the other
hand, if ¢, =0 and x, <0, then

2“n
ben_

Xp+l = Xp +

If (p, q) is almost balanced at 3, then we can choose the initial value

g<n>=§(’§)+§<n—z>+xn

such that x, < n and x; <0 whenever ¢;=0. Thus

o e, £ 0,

L;Cﬂ—l if e, = 0.

Xntl =
Xn +

Therefore,

n+2qA12 —
Xnt2g — Xn = Z ﬂq - H#e|ln<i<n+2¢¢=0}=0.
i=n

Thus, again {x,} is periodic and the general form of g(m) is
pmy B
== —(m-2 -
g(m) q(3)+q(m )+ x

Therefore g(m)/ () — p/q.-

Example 2 Let p=6 and g =47. The pair (6,47) is not balanced at
any number. However, it is almost balanced at 5=11. One can check
that ¢,3 = 70 = 25 = ¢7» = 0. By taking the initial value

6 (493\ 11
= = ——(491) —
£(493) = 2534050 47< 3 >+ 70 - 1.

we get the limit 6/47.

CONJIECTURE We conjecture that for a pair of integers (p, g), if there
exists an integer § such that ijal (28 — ¢;)/q is an integer and

g — ¢
0< ZT’S#{CiIOSi<2q,Ci:0},
i=0

then there exist integers b and ¢ such that H(b, c) =p/q.
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In the following, we give some bounds to the initial value g(b)=cin
order that H(b, c) is not equal to a given rational number p/q.

THEOREM 7 For the sequence {g(n)} determined by the recurrence
relation (5) and initial value g(b) = c, if

g(b) <2 (13)) +b3;q2

or

then H(b, c) # p/q.

Proof Write g(b) = (p/q)(5) + xp. If x, < (b — 2)/3q, then

glb+1) = g(b) + {-bf—zgw)J
1) b
<1_7<b+1> b
(" 3

where e, = mod(p(lz’), q). Note that x,,,=x,—ep/qg<x,<(b+
1 —2)/(3g). Therefore, we can repeat this process, and get

and, in general,

where C is the constant Ef:q] ei/q > 0. Since x; is a fixed number, there
exists an integer m such that x,, <0, and g(m) < p(7)/q. Thus
h(m) = g(m)/(}) < p/q. Note that h(n) is a monotonically non-
increasing sequence, so that the limit of 4(n) cannot be equal to plq.
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On the other hand, if for some initial value b,
p(b
= -2
s >2(3) + -2,

we can write g(b) as

g(b) =§ (1;) +a<b; 1) + Xp,

where a(b —1)/2 > 1 and x,=0.
For any g(n) of the form

g(n) :§(§> +a<n; 1) + X,

with a(n — 1)/2 > 1 and x,, > 0, we have

sne ) =2() wa("y ) s [E(5) + 24020 —
() ra("3 ) g () + 050

<n—;—l) +a(’21) +g(n— 1) + x,.

That is,
a
Xnti Z Xn +§(n — 1)

Iterating ¢ times, we have

aft—1 a(n—1) aft—1
_ > - - > = .
w23 (7)o ()25 ()

Now taking n =t = b, we have
p (26 2b—1 afb-—1
> S B
g(2b)_q<3)+a< 5 + X +2 )
>p’ 2b 4 2h—-1 by
_q, 3 a 2 >
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where

P_p 3a b-2
g q

8h 2b—1°

When we keep iterating, it is always true that

pm m— 1
>— .
g(m)_q,(3>+a< 2 )
Thus the limit H(b, c) is at least p’/q’ which is larger than p/q.

Using Theorem 7, we can show that certain numbers will not appear
as a limit H(b,c) for any choice of integers b,c. As an example, we
show that 1 cannot be a value of H(b, c).

Example 3 For any integers b and ¢, H(b, c) #1.

Proof Assume to the contrary that there exists initial value g(n),
(n>40) such that H(n,g(n))=3;. By Theorem 7, the term g(n) can be
written as

g =3(3) + 502 +x.

where x, €[1,2), and 0 < 8 < 4. Consequently, we have

1 /n Jé) 1 /n 33 3x,
g(”+1):Z(3)+Z(""2)+X”+L‘t(z)jLTJrn—zJ'
Case I 1f 3 > 1, then
1 1 3
g(n+1)22(§)+§(n~2)+xn+b(;)—kjﬁ}.

Let 1=38],y=33—1,and ¢, = mod((}) + ¢,4). Then

g(i1+1)2%(§>+§(n—2)+xn+ {@;}@:ﬂJ

C1(n+1\ 8
—Z< 3 >+Z(l’l‘—l)+xn+la
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where

2ﬂ_7_cn

Xpyl = Xp + 4

Note that for any value of ¢, ¢, , § = ¢,. Furthermore, in any period
of length 8, the values of ¢, are {0,0,1,1,2,2,3,3). Our choice of x,
will guarantee that x,, . ; > 0. Continuing the iteration, we obtain

n+7
26—y ¢
x>y T
s xn_i:n 4
=2(26~-~) -3
If 1<B<% then y=38-3, and 2(28—~)-3=3-28>
3-24=1"1f >4 then v<1, and 226 —~) — 3> 226 — 1)—
3 > 1. Hence, in the case 8 > 1,
1
xn+8_an§ = .xn+8k_an§.
Now
n+ 8k 8 k
g(n+8k) > Z( 3 >+Z("+8k_2)+§+x"'

Letting & = n, we have

gom = () + (F45) 0=+,

and therefore

g0 = (9§”> + (g + %) (971 = 2) + x,.

As m increases the linear term 5/4 +m/27 will be larger than 1.
By Theorem 7, § will not be the limit of g(n)/(}).

Case 2 1f f< 1, then

st =5 ("3 )+ G-+
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where

28—7—cn

Xntl = Xp + 4 s

and x, 1 <x,+4. Thus 3x, . 1/(n — 1) <4, and

N n+1\ 38 3x
g(n+2)_g(n+l)+[4< ) )+4+—n_1J

<gn+1)+ H(";I)Jr?J

BV 28—~ cuy
_4< 3 >+4(n)+xn+1+—4—

That is,

2/6_7_Cn+2/8-7_cn+1
4 4 ’

Xpt2 < Xy +

Repeating this procedure, and noting that the inequality 3x,, .,/
(n+i—2)<}tholdsfori=1,2,...,8, we have

n+72ﬂ
’Y‘e
xn+8_-xn<z .

=2(28—7) - 3.

If <2 then 2(28—7)-3<48-3<-L If 2<f<1, then
¥=36-2,and 2(28 - 7) —3 =1 ~28 < —1. Hence in the case that
8 <1, we always have

1
Xntg — Xn < —3.

Now

1 8k
g(n+8k) = ("‘; )+§(n+8k—2)+xn+gk

l /n+ 8k 38 k
< = —2) ==+ x,.
< < 3 >+4(n+8k 2) 3+x,,
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Letting k = n, we have

g(9n) < % (93") + (g - 2%) (9n = 2) + x,

and, therefore,

g(9"n) < % (9;’”) + <§ - %) (9"n — 2) + x,.

As m increases, the linear term (/4 —m/27 will drop below 0. By
Theorem 7, X cannot be the limit of g(n)/(;). This prove our claim.

By the same argument, one can show that there are no integers b

and ¢ such that H(b,c)=3.

5 QUESTIONS AND CONJECTURES

In this section, we first list some data about the balanced pairs and the
almost balanced pairs (Tables Il and III). They were obtained with the
help of the Maple symbolic computation package.

These data lead us to the following conjectures.

CoNJECTURE 1 For any prime k, the pair (k,k+ 1) is a balanced
pair.

CONJECTURE 2 For any rational number of the form p/2’ ;é%, p odd,
there are no integers b and ¢ such that H(b, ¢) = p/2".

Clearly, there are many more questions than answers at this point.
For example, find integers » and ¢ so that H(b,¢) is irrational. We
believe good candidates are H(5,4) and H(5,8). Can we characterize
those b and ¢ for which H(b,c) is rational? Conceivably, H(b,c) is
irrational for almost all pairs (b, c). Can H(b, ¢) be rational without
the existence of balanced or almost balanced pairs? What values of p/g
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TABLE I Balanced pairs for 0 < p < ¢ <20, ged(p, g)=1

plq  Balanced pair I5) plq  Balanced pair 8 plq  Balanced pair 3

12 (2, 4) 1 1/3 3,9 2 23 (6,9) 1
2/5 2,59 1 3/5 3,9 1 4/5 @,3) 1
1/ (6, 36) 7 56 (30,36) 11 2/7 2,7 2
4/7 4,7 lor2  6/7 6,7 lor2 49  (12,27) 5
5/9 (15,27 4 79 (21,27) 8 89  (24,27) 7
1/10 (2, 20) 5910 (18,20) 5 /11 (1,11) 3
2/11 2,11 3 3 (3,11 3 501 Gy 2
6/11 (6, 11) 27 (7,11) 301011 o1y 2
2/13 2, 13) 3 413 (4,13) 3513 (5,13) 3
6/13 (6, 13) 4 713 (7,13) 301013 (10,13) 2
11/13 (11, 13) 300 12/13 0 (12,13) 4 514 (10,28) 7
9/14 (18, 28) 7215 (6,45 10 415 (12,45 8
715 (21,45)  1lorl4 14/1S (42,45 10orl3 217 (2,17) 4
317 (3, 17) s 817 (817 510017 (10,17) 3
/17 (1,17 3ord 14/17 (14,17 4 1517 (15,17 4
16/17 (16, 17) 4 118 (6, 108) 25 17/18  (102,108) 29
2/19 2, 19) 5319 (3,19) 4 619 (6,19 5
9/19 (9, 19) 5119 (11, 19) S 1519 (15,19) 5
16/19 (16, 19) 4 18/19 (18, 19) 5

TABLE III'  Almost balanced pairs for 0 < p < ¢ < 30

(».9) B (».9) 8 (p,q) 8
(8,11) 3 9, 13) 4 6,17) 5
9,17 5 13,17) 4 (8, 19) 5
10, 19) 6 (14, 19) 5 (16, 19)* 6
(11, 23) 6 (13, 23) 5 (14, 23) 7
(20, 23) 6 (12, 25) 6 (16, 25) 8
(24, 25) 7 (7,29) 9 9, 29) 8
(11, 29)* 9 (13, 29)* 8 (15, 29) 8
(20, 29)* 9 (22, 29) 8 (24, 29) 7
(26, 29) 8 (27, 29)* 9

* The pair is also balanced.

do not occur as values of H(b, c)? Must any such forbidden value have
g =2"for some ¢?

Of course, all of these questions (and more) can be raised for larger
values of «, and in particular, o =4, 5, ... These recurrences are all
special cases of the more general recurrence

_ Le(n)f(n)]
fint+1)= ——p(n)

>
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where p(n) is some function (e.g., a polynomial) which tends to infinity
as n tends to infinity (e.g., a=3, a=2 in the recurrence (1)
corresponds to the choice p(n) = ("}')). What is true in this more
general situation?
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