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MEMORANDUM FOR FILE

Let Xn = [Xl’xg""’xn} be a set of n distinct
symbols and let Cn be the set of all n! arrangements of the

X:. The elements of C_ will be written in the form x., x. ...
i n 171
where the ik are Jjust the integers 1,2,...,n in some order.
If n = 3, then the sequence By = (By(k): 0 < k<6

defined by:

B3 = (xlx2x3, K XgXps X3XiXp, XXXy, XXX, x2x1x3)

has the following properties:
(1) B3(k+l) can be formed from B3(k) by the single
transposition of two adjacent X (where B3(k+3!)
is defined to be BB(k)).'
(2) All elements of 03 occur in B3 exactly once,
It 1s the purpose of this note to present a simple
algorithm for arranging the elements of Cn into a seqguence
B, so that (1) and (2) are satisfied (with 3 replaced by n).
In particular the algorithm recursively computes the sequenc:
of integers A = (An(k): 0 < k € n!) where Bn(k+l) is
obtained from Bn(k) by interchanging the symbols in positions

An(k) and An(k) + 1, and Bn(J+n!) =B (j).

n
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If the sequence An 1s stored in the computer, then
one has a very rapid method of generatlng permutations.*

It 1s no restriction to suppose that Xn 1s the set
of integers from 1 to n.

The basic idea we shall use 1is the following:
Suppose B has been defined so that (1) and (2) are
satisfied. We then construct B3 by comblining slightly
altered coples of Bn. Specifically, suppose for each k,

1 <k<n, r,  1s chosen so that
and

and therefore
Bn(rk+l) = Jl"'Jn-lk'

Certainly such a cholce 1s always possible. Now, for each

A

k and ry form a sequence Bk

nt1 of n! arrangements of the

A
integers from 1 to n+l as follows: Béf% (0) 1s obtained

from Br(rk) by 1nserting n+l between 1ts last two elements

ﬁ(k) (0) = 1 i

1 1---1 1 (n+1)k.

*See A. J. Goldstein, "A Computer Oriented Algorithm
for Generating Permutations'" MM-64-1271-3.
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Then ﬁﬁf% (J) for j = 1,...,n!-1 is obtained by starting with
ﬁﬁﬁ% (0) and "applying the A sequence backwards', starting
with An(rk) Specifically, %ﬁf{ (j+1) is obtained from

ﬁéi% (j) by interchanging the elements 1n positions An(rk—j)
and An(rk—j) + 1, where A(1+n!) = A(1).

A(n+1)

The last copy of Bn’ namely Bn+1 , 1s obtained

from Bn by adjoining n+l to the right hand end of each element

of Bn'
" . " A(K)
Now construct B by "inserting® Bp -y for 1 <k dn
into Eéﬁ{l) as follows:
’ A (r, -1)
~(n+1) . A (ry
Bl (rk) = 11...in_1k(n+l)'
D
5(k) . .
B 1 (0) = 1. .1n_l(n+1)k}A (o)
n'Tk
/\(k) _ }An<l"k—ﬂl+l)
B .1 (nt-1) = J, Joo1(n+l)k
}n
a(n+l) _ .
By (rk+l) = J; ..Jn_lk(n+l)

The righthand column 1s the An sequence. Since by hypothesis

+1

Jl"’jn-lk can be obtained from il"'in—lk by a single trans-

position of a pair of adjacent j'sthen each term of Bn+1 can be

obtained from the preceding term of Bn+l in the same way.
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The obvious problem which arises in the previous
construction of An+l from An i1s the determination of the r .
(Recall that r, was defined to be an integer such that
Bn(rk) and Bn(rk+l) both have k as their final term.) We
now show ﬁhat if An is defined suitably, then, to obtain
’An+1 from An’ the T which we use may be chosen to be the
integers {n + J+(n-1)!: 0 < J < n}. We define A3 to be
(2,1,2,1,2,1) and A4 to be
(2,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1). (The
reader may check that the corresponding B3 and B4 satisfy
(1) and (2).) Now assume that A , n > 4, has been defined

so that 1t has the structure:

A = (Yl’ n-1, X; , n-1, Y, n-1, X; 5 n-1, ...
1 2
.0 ] 1’1—1, X. K] 1’1-1, Y )
Xi ‘
e (n-1)1 - 1

denotes a block of length for 1 < k < n
YJ —_— (n-2)! - 1 =
and 1 < J < n. The lengths of ¥, and Y sum to (n-2)! - 1.
No term of X or Y, is equal to n-1.

ik J
Let An(s) denote the first term of X, and consider

1
the terms ay = A(s + J(n=1)!) of A, for 0 <J< n. Claim:

Each Xi contalns exactly one aj, aJ is never n-1, and exactly

k _

one ajy lies in a Y,. Since each X; contains (n-1)!-1 terms,
k

no Xi can contain more than on aj or less than one aj, i.e.,

k
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each X

4 must contain exactly one ay. If n > 4, then
k

(n-2)! = 0 (mod 2).

By definition

Thus 1f
A (J) =n-1
then it follows from consideration of the lengths of Xi and Yi that

k

= -1 (mod 2)

[
Il

and hence
a‘j # n-1.

There are n-1 of the X each of which contains exactly one aJ

i
k
and no a‘j is equal to n-1. Hence exactly one of the aJ falls into

a Y, for some J.

J
By considering the way 1in which Bn is related to A

we see that 1if F(Bn(J)) denotes the final term of Bn(j)

(1.e., F(il...in) = 1n) and An(j) 5 xir, An(k) E xis, then

n # F(B,(J)) = F(B,(J+1)) # F(B_(k)) = F(B_ (k+1)) # n.

Similarly 1f

A (m) ey

n( t’

OFFICIAL FILE COPY

BELL TELEPHONE LABORATORIES
iINCORPORATED

E-7770 (4-89)



then

F(B,(m))

F(Bn(m+l)) = n.

Thus we can use the ays 0 < J < n for an allowable set of r.
with which to form Br1+1 from Bn and hence An+1 from An‘ It is
not difficult to see that by defining An+1 in this regular

manner, A will have a structure similar to that of An (with

n+l
n replaced by n+l) and therefore suitable for defining A ips
ete. A small amount of computation shows that the following

recursive definition for An describes the preceding algorithm:T

_f1 1if k is odd
A3(k) {2 otherwlse
n if k¥ = 0 or n!
e
An+1(k) = An<(n-l)! LTF?] + n - k*> if k* < n!
A((n—l)' k-n| 4 k*\ if  k* > n!
n\_ “ |l n¥ ’

for n > 3 where Ar(x) = Ar(x+r!), n* = n! + (n-1)1,

k* = k - n (mod n*) such that O < k* < n* and [x] denotes
the greatest integer not exceedling x.

Example: A5.

If A5 1s generated according to the text we find that

TFor n =3 this definition chooses the first term of
X, 1instead of X, for A (s).
2 1 n
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= (2,3,2,3,4,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1
2,3,2,3,2,1,2,1,4,1,2,1,2,3,4,3,2,1,2,1
°2,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1,2,3,4,3
2,1,2,1,4,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3
2,1,2,1,2,3,2,3,4,3,2,3,2,1,4,1,2,3,2,3
2,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3,2,1,4,1)

A5

Suppose we wish to calculate A5(97). Here we have:
n =4

n* = 41 + 31 = 30

k = 97
k* = 97 - 4 = 93 = 3 (mod 30)
S k* = 3 <24 = 41
K-
] -
e A5(97) = A4(6‘3+4-3) = A4(19)-
To get A4(19) we have:
n =3
n* = 8
kK = 19
k* = 19 - 3 = 16 = 0 (mod 8)

k*

i
O
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il
(OV]

o Ay (19)
A5(97>

It
o

which may be verified directly by examinationsof the table.

AN LTz ©
A, J. GOLDSTEIN

1271 AJG 4
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