BELL TELEPHONE LABORATORIES INCORPORATED

THE INFORMATION CONTAINED HEREIN IS FOR THE USE OF EMPLOYEES OF BELL TELEPHONE LABORATORIES, INCORPORATED, AND IS NOT FOR PUBLICATION.

COVER SHEET FOR TECHNICAL MEMORANDUM

TITLE— Sequential Generation by Transpositions MM 64 _ 1271 _ 5 of all the Arrangements of n Symbols 64 1213 12

DATE - June 9, 1964

CASE CHARGED 39199, 20878-4
FILING CASES 39199-11
20878

AUTHOR— A. J. Goldstein R. L. Graham

FILING SUBJECTS— Permutations
Group Theory
Computer Algorithms

ABSTRACT

It is shown that the set of n: arrangements of n distinct symbols can be generated by successive transpositions of adjacent symbols. The sequence of transpositions can be specified by a sequence of integers $A_n(k)$, $k=1,\ldots,n$; where the k^{th} transposition interchanges the symbols in positions $A_n(k)$ and $A_n(k)+1$. A simple recursive algorithm for computing this sequence is given.

OFFICIAL FILE COPY
BELL TELEPHONE LABORATORIES
INCORPORATED

E-7770 (4-59) E-1932-C (5-63)

DISTRIBUTION (REFER G. E. I. 13.9-3)

COMPLETE MEMORANDUM TO

CORRESPONDENCE FILES:

OFFICIAL FILE COPY (FORM E-7770) — PLUS ONE WHITE COPY FOR EACH ADDITIONAL FILING CASE REFERENCED

DATE FILE COPY (FORM E-1328)

REFERENCE COPIES (11 IF UNCLASSIFIED. 7 IF CLASSIFIED)

PATENT DIVISION (2) IF MEMORANDUM HAS PATENT SIGNIFICANCE

THC-EED-Case File

D. B. Armstrong

W. O. Baker

G. L. Bladwin

W. S. Brown

T. M. Burford

T. J. Chinlund

C. Christensen

W. A. Cornell

T. H. Crowley

E. E. David, Jr.

R. E. Drummond

D. E. Eastwood

M. P. Epstein

P. E. Fleisher

E. N. Gilbert

D. Gillette

J. A. Githens

Miss R. J. Greibach

Miss M. C. Gray

D. W. Hagelbarger

R. W. Hamming

H. Z. Hardaway

W. W. Hardgrave

J. A. Harr

E. Helfand

A. T. Herbst

B. D. Holbrook

J. P. Hyde

I. Jacobs

A. E. Joel, Jr.

A. Kaiman

J. F. Kaiser

™. Karnaugh

. L. Kelly, Jr.

Miss C. J. Kinnaman

K. C. Knowlton

J. B. Kruskal

Miss D. C. Leagus

C. Y. Lee

S. Lin

D. P. Ling

COVER SHEET ONLY TO

CORRESPONDENCE FILES:

TWO COPIES (ONE IF CLASSIFIED) -PLUS ONE COPY FOR EACH ADDITIONAL FILING SUBJECT

C. E. Brooks

C. C. Culter

R. Kompfner

Miss E. La Jeunesse (7)

S. E. Miller

M. R. Schroeder

L. C. Tillotson

R. L. Wallace

A. H. White

J. A. Young

Code 351 (no outside people)

Complete Memorandum to (Cont'd)

A. A. Lundstrom

Mrs. F. J. MacWilliams

W. H. MacWilliams

C. L. Mallows

W. A. Malthaner

Mrs. W. Mammel

N. A. Martellotto

M. V. Mathews

H. S. McDonald

M. D. McIlroy

P. R. Menon

F. R. Michael

W. B. Millhiser

E. F. Moore

R. Morris

P. G. Neumann

J. R. Pierce

H. O. Pollak

I. P. Polonsky

R. G. Rausch

S. O. Rice

J. Riordan

R. H. Roth

J. P. Runyon

C. L. Semmelman

C. E. Shannon

F. W. Sinden

DISTRIBUTION

(REFER G. E. I. 13.9-3)

COMPLETE MEMORANDUM TO

CORRESPONDENCE FILES:

OFFICIAL FILE COPY (FORM E-7770) —
PLUS ONE WHITE COPY FOR EACH ADDITIONAL FILING
CASE REFERENCED

DATE FILE COPY (FORM E-1328)

REFERENCE COPIES (11 IF UNCLASSIFIED. 7 IF CLASSIFIED)

PATENT DIVISION (2)
IF MEMORANDUM HAS PATENT SIGNIFICANCE

(Cont'd)

- L. A. Shepp
- P. M. Sherman
- D. Slepian
- J. W. Suurballe
- B. A. Tague
- M. E. Terry
- W. P. Timlake
- J. F. Traub
- J. W. Tukey
- W. O. Turner
- S. H. Washburn

Miss R. A. Weiss

- V. A. Vyssotsky
- M. B. Wilk
- R. I. Wilkinson
- A. D. Wyner
- T. Y. Young

COVER SHEET ONLY TO

CORRESPONDENCE FILES:

TWO COPIES (ONE IF CLASSIFIED) -- PLUS ONE COPY FOR EACH ADDITIONAL FILING SUBJECT

BELL TELEPHONE LABORATORIES INCORPORATED

SUBJECT: Sequential Generation by Transpositions of all the Arrangements of n Symbols - Cases 39199-11 and 20878

defined by:

DATE: June 9, 1964

R. L. Graham MM-64-1271-5 MM-64-1213-12

MEMORANDUM FOR FILE

Let $X_n = \{x_1, x_2, \ldots, x_n\}$ be a set of n distinct symbols and let C_n be the set of all n! arrangements of the x_i . The elements of C_n will be written in the form $x_i x_i \ldots x_i$ where the i_k are just the integers 1,2,...,n in some order. If n = 3, then the sequence $B_3 = (B_3(k): 0 \le k < 6)$

 $B_{3} = (x_{1}x_{2}x_{3}, x_{1}x_{3}x_{2}, x_{3}x_{1}x_{2}, x_{3}x_{2}x_{1}, x_{2}x_{3}x_{1}, x_{2}x_{1}x_{3})$ has the following properties:

- (1) $B_3(k+1)$ can be formed from $B_3(k)$ by the single transposition of two adjacent x_j (where $B_3(k+3!)$ is defined to be $B_3(k)$).
- (2) All elements of C_3 occur in B_3 exactly once. It is the purpose of this note to present a simple algorithm for arranging the elements of C_n into a sequence B_n so that (1) and (2) are satisfied (with 3 replaced by n). In particular the algorithm recursively computes the sequence of integers $A_n = (A_n(k): 0 \le k < n!)$ where $B_n(k+1)$ is obtained from $B_n(k)$ by interchanging the symbols in positions $A_n(k)$ and $A_n(k) + 1$, and $B_n(j+n!) = B_n(j)$.

If the sequence $\mathbf{A}_{\mathbf{n}}$ is stored in the computer, then one has a very rapid method of generating permutations.*

It is no restriction to suppose that \mathbf{X}_n is the set of integers from 1 to n.

The basic idea we shall use is the following: Suppose B_n has been defined so that (1) and (2) are satisfied. We then construct B_{n+1} by combining slightly altered copies of B_n . Specifically, suppose for each k, $1 \le k \le n$, r_k is chosen so that

$$A_n(r_k) < n-1$$

and

$$B_{n}(r_{k}) = i_{1} \dots i_{n-1}k$$

and therefore

$$B_{n}(r_{k}+1) = j_{1} \dots j_{n-1}k.$$

Certainly such a choice is always possible. Now, for each k and r_k form a sequence $\overset{\boldsymbol{\wedge}}{B}_{n+1}^k$ of n! arrangements of the integers from 1 to n+1 as follows: $\overset{\boldsymbol{\wedge}}{B}_{n+1}^{(k)}$ (0) is obtained from $B_n(r_k)$ by inserting n+1 between its last two elements

$$B_{n+1}^{(k)}(0) = i_1...i_{n-1}(n+1)k.$$

^{*}See A. J. Goldstein, "A Computer Oriented Algorithm for Generating Permutations" MM-64-1271-3.

Then $\hat{B}_{n+1}^{(k)}$ (j) for $j=1,\ldots,n!-1$ is obtained by starting with $\hat{B}_{n+1}^{(k)}$ (0) and "applying the A_n sequence backwards", starting with $A_n(r_k)$. Specifically, $\hat{B}_{n+1}^{(k)}$ (j+1) is obtained from $\hat{B}_{n+1}^{(k)}$ (j) by interchanging the elements in positions $A_n(r_k-j)$ and $A_n(r_k-j)+1$, where A(i+n!)=A(i).

The last copy of B_n , namely $\widehat{B}_{n+1}^{(n+1)}$, is obtained from B_n by adjoining n+1 to the right hand end of each element of B_n .

Now construct B_{n+1} by "inserting" $\hat{B}_{n+1}^{(k)}$ for $1 \le k \le n$ into $\hat{B}_{n+1}^{(n+1)}$ as follows:

$$\hat{B}_{n+1}^{(n+1)}(r_k) = i_1 \dots i_{n-1}^{k(n+1)} A_n^{(r_k-1)}$$

$$\hat{B}_{n+1}^{(k)}(0) = i_1 \dots i_{n-1}^{(n+1)k} A_n^{(r_k)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\hat{B}_{n+1}^{(k)}(n!-1) = j_1 \dots j_{n-1}^{(n+1)k} A_n^{(r_k-n!+1)}$$

$$\hat{B}_{n+1}^{(n+1)}(r_k+1) = j_1 \dots j_{n-1}^{k(n+1)} \vdots \qquad \vdots$$

The right hand column is the A_{n+1} sequence. Since by hypothesis $j_1\cdots j_{n-1}k$ can be obtained from $i_1\cdots i_{n-1}k$ by a single transposition of a pair of adjacent j's then each term of B_{n+1} can be obtained from the preceding term of B_{n+1} in the same way.

$$A_n = (Y_1, n-1, X_{i_1}, n-1, Y_2, n-1, X_{i_2}, n-1, ..., n-1, X_{i_{n-1}}, n-1, Y_n).$$

 $\begin{cases} \overset{X}{i}_{k} \text{ denotes a } \underline{\text{block}} \text{ of length } \left\{ \begin{pmatrix} n-1 \\ n-2 \end{pmatrix} \right\} - 1 \text{ for } 1 \leq k < n \\ \text{and } 1 < j < n. \text{ The lengths of } Y_{1} \text{ and } Y_{n} \text{ sum to } (n-2)! - 1. \\ \text{No term of } X_{1_{k}} \text{ or } Y_{j} \text{ is equal to } n-1. \end{cases}$

Let $A_n(s)$ denote the first term of X_1 and consider the terms $a_j = A(s + j(n-1)!)$ of A_n for $0 \le j < n$. Claim: Each X_1 contains exactly one a_j , a_j is never n-1, and exactly one a_j lies in a Y_1 . Since each X_1 contains (n-1)!-1 terms, no X_1 can contain more than on a_j or less than one a_j , i.e.,

each x_{i_k} must contain exactly one aj. If $n \ge 4$, then

$$(n-2)! \equiv 0 \pmod{2}$$
.

By definition

$$A_n(s-1) = n-1.$$

Thus if

$$A_n(j) = n-1$$

then it follows from consideration of the lengths of $\mathbf{X}_{\mathbf{i}_k}$ and $\mathbf{Y}_{\mathbf{i}}$ that

$$j \equiv s-1 \pmod{2}$$

and hence

$$a_j \neq n-1$$
.

There are n-1 of the $\mathbf{X}_{\mathbf{i}_k}$ each of which contains exactly one \mathbf{a}_j and no \mathbf{a}_j is equal to n-1. Hence exactly one of the \mathbf{a}_j falls into a \mathbf{Y}_j for some j.

By considering the way in which B_n is related to A_n we see that if $F(B_n(j))$ denotes the final term of $B_n(j)$ (i.e., $F(i_1...i_n) = i_n$) and $A_n(j) \in X_i$, $A_n(k) \in X_i$, then $n \neq F(B_n(j)) = F(B_n(j+1)) \neq F(B_n(k)) = F(B_n(k+1)) \neq n$. Similarly if

$$A_n(m) \in Y_t$$

then

$$F(B_n(m)) = F(B_n(m+1)) = n.$$

Thus we can use the a_j , $0 \le j < n$ for an allowable set of r_k with which to form B_{n+1} from B_n and hence A_{n+1} from A_n . It is not difficult to see that by defining A_{n+1} in this regular manner, A_{n+1} will have a structure similar to that of A_n (with n replaced by n+1) and therefore suitable for defining A_{n+2} , etc. A small amount of computation shows that the following recursive definition for A_n describes the preceding algorithm: †

$$A_3(k) = \begin{cases} 1 & \text{if } k \text{ is odd} \\ 2 & \text{otherwise} \end{cases}$$

$$A_{n+1}(k) = \begin{cases} n & \text{if } k^* = 0 \text{ or n!} \\ A_n((n-1)! \left[\frac{k-n}{n^*}\right] + n - k^*) & \text{if } k^* < n! \\ A_n((n-1)! \left[\frac{k-n}{n^*}\right] + n + k^*) & \text{if } k^* > n! \end{cases}$$

for $n \ge 3$ where $A_r(x) = A_r(x+r!)$, n* = n! + (n-1)!, $k* \equiv k - n \pmod{n*}$ such that $0 \le k* < n*$ and [x] denotes the greatest integer not exceeding x.

Example: A_5 .

If A_5 is generated according to the text we find that

 $^{^{\}dagger}$ For n = 3 this definition chooses the first term of X_i instead of X_i for A_n(s).

$$A_{5} = (2,3,2,3,4,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1)$$

$$2,3,2,3,2,1,2,1,4,1,2,1,2,3,4,3,2,1,2,1)$$

$$2,3,2,3,2,1,2,1,2,3,2,3,2,1,2,1,2,3,4,3)$$

$$2,1,2,1,4,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3)$$

$$2,1,2,1,2,3,2,3,4,3,2,3,2,1,4,1,2,3,2,3)$$

$$2,1,2,1,2,3,2,3,2,1,2,1,2,3,2,3,2,1,4,1)$$

Suppose we wish to calculate $A_5(97)$. Here we have:

$$n = 4$$

$$n^* = 4! + 3! = 30$$

$$k = 97$$

$$k^* = 97 - 4 = 93 = 3 \pmod{30}$$

$$k^* = 3 < 24 = 4!$$

$$\left[\frac{k-n}{n^*}\right] = 3$$

$$A_5(97) = A_4(6\cdot 3 + 4 - 3) = A_4(19).$$

To get $A_{4}(19)$ we have:

$$n = 3$$
 $n* = 8$
 $k = 19$
 $k* = 19 - 3 = 16 \equiv 0 \pmod{8}$
 $\therefore k* = 0$

$$A_{4}(19) = n = 3$$

$$A_{5}(97) = 3$$

which may be verified directly by examination of the table.

A. J. GOLDSTEIN

R L Graham

R. L. GRAHAM

MH-1271-AJG-DC