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SOME YEARS AGO the Bell Telephone Company had, in a room in one
of its New York offices, a very large map of the United States. This map
showed all of the major cities with long-distance service, connected by
strings representing telephone lines. When one calls long-distance be-
tween New York and Los Angeles, for example, the call may be routed
through Atlanta or Detroit—or through many other cities, depending
on the availability of circuits. These routes can differ in length by
hundreds, if not thousands, of miles, but one is charged the same
amount—based on the minimum distance—no matter what path the
call actually takes. To determine the shortest route of a telephone call,
if it went over existing facilities, the lengths of these strings were
measured and compared to other possible routes.

By the mid-1950’s, after Bell Labs had taken delivery of the largest
computers being manufactured by 1.B.M., the question arose as to
whether the strings could be replaced by some model calculation done
with a computer. Such a calculational procedure is called an “algo-
rithm,” and, in 1957, the Bell mathematician Robert C. Prim, building
on work done a year earlier at Bell Labs by Joseph B. Kruskal, found
a simple algorithm that was well-suited to machine computation. The
strings have now disappeared.

Roughly speaking, there are three kinds of computational prob-
lems. In 1936 the British mathematician Alan Turing demonstrated
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the existence of problems for which no algorithmic solutions exist in
principle. They are closely related to the Goédel theorems, which
demonstrate the undecidability of some propositions in formal mathe-
matics. Then there are problems for which an algorithm exists—the
problem is “decidable”—but the computer time needed to use it
would grow exponentially with the “size” of the problem. For all
practical purposes such an algorithm is useless, since it might take,
for example, a time equivalent to the present age of the universe
(some 12 billion years) for a computer—or, for that matter, any real-
istic number of computers—to produce a solution. Such problems are
called “intractable.” Finally, there is a class of problems—mathemati-
cians working in this field tend to call them the “easy problems”—for
which there exists an algorithm of such a character that the computer
time does not grow faster than some polynomial in the size of the
problem. For example, if the size is n, then the computer time might
grow only as fast as n2.

Although all of this might seem somewhat academic as far as the
telephone company is concerned, it is not. The fixing of tariffs for
‘“Private Line” telephone service is a practical application of such
algorithms. Many large corporations have private lines connecting their
operations in various locations. The history of how tariffs for these lines
were arrived at seems to be rather obscure, but one factor has to do with
minimizing the length of the telephone lines connecting the locations.
Below is a diagram of four locations, which, for simplicity, I have put
on the corners of a square.
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Let us assume that existing telephone lines connect these points.
As the next diagram shows, at least three lines are needed in order to
connect all four points. If the edge of the square has length 4, then the
total length needed to connect these points is 3a.
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There is nothing very obscure about this, but this is not how the
effective length a was computed for determining the tariff. To illustrate
how this was done, I have put a hypothetical point in the middle of
the square. This point need not correspond to an actual point on the
telephone network; in fact, it generally won’t correspond to such a
point. There need not even be a telephone there. It is simply an
arbitrarily chosen point that could, in principle, correspond to a tele-
phone exchange.
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In the next diagram I have connected the imaginary telephone
exchange by four imaginary telephone lines to the corners of the square.

By using Pythagoras’ theorem, one can readily show that the length

of each of these imaginary lines is La, and since there are four of
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them the length of the imaginary network is 2.84, which is less than
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3a by about 7 percent. It turns out that one can do even better by
adding two imaginary points, as shown in the next diagram (the central
lines meet at 120°):
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The length of this imaginary network is (V'3 + 1)a, or 2.7a. This,
it can be shown, is the best that one can do, no matter how many
imaginary points are added to the square, and according to the tariff
structure, this “hypothetical length” is used to figure out the tariff.
AT&T was forced to do this because of successful lawsuits that argued
that Private Line tariffs should be based on the minimal-possible-length
telephone networks and not on some network chosen for the conve-
nience of the telephone company.

Such a network is called a “tree” by mathematicians, and these
imaginary extra points are named “Steiner points” after the nine-
teenth-century Swiss mathematician Jakob Steiner, who studied this
problem for the case of three points. The tree that, in the case that we
have been considering, produced the smallest net lengths is called the
“Steiner minimal tree.” The last diagram is the Steiner minimal tree
for this case. For certain very simple, symmetrical cases, like the one
here, determining the Steiner minimal tree is an “easy problem.” But
if more cities are added to the Private Line network, and if they are
not located symmetrically, determining the minimal Steiner tree ex-
actly is, in a practical sense, hopeless. As Ronald Graham, the Bell
mathematician who first introduced me to this problem, put it, “You
could have a New Jersey full of Crays [the fastest computer now
operating], and you still couldn’t solve the general Steiner problem for
twenty-five points.” Thus, there was no rigorous way in which AT&T
could have decided precisely what tariff to charge for Private Line
service where a great number of locations was involved.

It has never been clear to me what is meant when someone says so
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and so looks like a mathematician. However, I am quite sure that
Ronald Graham does not look like a mathematician. He looks, perhaps,
like a professional acrobat or juggler, both of which he was. He was once
president of the International Jugglers Association, and he is the only
mathematician I know of who worked his way through graduate school,
Berkeley in this case, by performing in a circus with a trampoline
troupe. For some time Graham had a large net suspended from his
office ceiling, to catch stray objects dropped while he practiced jug-
gling. (Claude Shannon, the former Bell electrical engineer and com-
puter scientist, who was one of the creators of information theory, was
able to ride a unicycle and juggle simultaneously.) Graham, who is
blond and about six feet two, and obviously in superb physical condi-
tion—a rarity among mathematicians—has recently taken up tennis
and immediately became a favorite to win the Bell Labs tennis cham-
pionship. He is also by all accounts a superb mathematician. He was
born on 31 October 1935, in Taft, California, where his father worked
in the oil fields. He has been at the Laboratories since 1962 and is now
director of the Mathematics and Statistics Center, a group of about
sixty mathematicians some of whom work, as does Graham, in discrete
mathematics—“discrete” as opposed to “continuous”’—which in-
cludes the kind of graph-theory problem represented in finding the
Steiner minimal tree. The Center publishes something like 250 papers
a year, and Graham, alone or with collaborators, publishes about
fifteen. In addition, he edits twenty-five journals in computer science,
combinatorics, number theory, operations research, graph theory, and
general mathematics. He also holds a rather bizarre record, which
appears in The Guinness Book of World Records, for the largest
number ever used in a mathematical proof. As Graham remarked, “It
is too large to understand what it actually means.” He came across it
in 1977. It is inexpressible without special notation and is, appropri-
ately, known as Graham’s number.

During Graham’s childhood, his peripatetic father moved back and
forth between California and Georgia, changing jobs frequently. He
finally joined the merchant marine, and he and Graham’s mother were
divorced. She moved to Florida, where Graham was put into yet an-
other school. But he was a very gifted student and left high school after
the eleventh grade with a Ford Foundation fellowship, which he used
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to enter the University of Chicago at the age of fifteen. In the early
1950’s Chicago was involved in one of those educational experiments
in which students are taught physics by reading the original works of
Isaac Newton—generally a losing move. Although Graham was nomi-
nally a science major, he did not take a single course in mathematics.
After three years his father offered him the chance to go to a somewhat
less adventurous college if he would move back to California. So Gra-
ham transferred to the University of California at Berkeley, where he
majored in electrical engineering. After a year there, he still had no
degree, although he had done the research for his Ph.D. thesis. How-
ever, he was eligible for the draft, so he enlisted in the air force and
was sent to Alaska. During his off-hours, he attended the University of
Alaska in Fairbanks, where he took his degree in physics in 1958—
seven years after entering the University of Chicago. After leaving the
air force, he now had the means to return to Berkeley and begin his
formal graduate work, although he had essentially done the research for
his Ph.D. thesis.

Berkeley has a rather traditional mathematics department. As Gra-
ham put it, “The department is quite pure. There is a strong emphasis
for people who graduate from there to teach and that is what I thought
I would be doing; but I wanted to take a look at the other side too.”
The “other side,” in this case, was mathematics as done in an industrial
laboratory. In 1962, when Graham got his degree, David Slepian, a Bell
Labs mathematician, was traveling around to the major universities to
recruit mathematicians for the Laboratories. As Graham explained,
“Bell Labs has a whole army of people in different disciplines who are
assigned to go to specific schools and talk to potential employees. But
I was told by the people at Berkeley that if I went nonacademic I would
be mathematically dead in three years. I decided to come anyway, with
the idea of trying it out for a few years, making a little money and then
deciding what I'd really do. I'm still here—twenty-two years later.
Slepian was a pretty persuasive guy.”

I was curious to know whether Graham was recruited for any
particular project at Bell. Mathematicians are so idiosyncratic that it
was hard for me to imagine them being recruited to work in a group
on some specific project. Graham explained that at the Labs about 10
percent of the work in general is officially designated as “research,” the
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rest being in developmental areas. The Mathematics Center, by and
large, does only undirected research. As Graham put it, “Our basic
philosophy is to get the best people we can and, in some sense, to stay
out of their way. I think in my case Slepian hoped I would get involved
in what is called ‘encoding theory’—a branch of mathematics of which,
along with Shannon and some of the other people here, he had been
one of the inventors. It involved techniques that were similar to what
I had been using for my thesis. Slepian gave me a book to read and
suggested that I might lead a seminar on the book. I looked through
it and noted very quickly that many of the people who had created the
field were right here, so I thought that my giving a seminar on the
subject was, to put it mildly, a little redundant. I learned the material,
which was very useful to me later for other work, but we ended up doing
a seminar on something else.”

Graham, who has had the responsibility for bringing people into his
group, told me, “Typically, it takes someone one or two years to learn
the ropes well enough here, to get a feel for what goes on and how to
function in this environment. It takes time for people to get plugged
into the various networks around here. One might mention to a new
person a few of the problems that are floating around. One difference
between Bell Labs and a university is that here, more or less, everyone
comes in every day and the office doors are open. There is a lot more
interaction here than in most universities, and a lot less feeling that the
problem I am working on is ‘my’ problem and that I'll tell you about
it when I've dotted all the i’s and crossed all the t’s. We have much
more of a community effort here, and it crosses disciplines. For exam-
ple, some of the chemists are now looking at the structure of graphs
—the kind of thing I do—and they like to get hold of mathematicians
to try out their ideas.

“But the atmosphere you work in here is very much a local phe-
nomenon. It depends in a fairly strong way on your local supervision.
For example, there are certain regulations about how much vacation
you get each year, and there are even regulations about your daily
starting time. There are some division managers who apply these regu-
lations pretty literally. Three weeks’ vacation doesn’t mean four. But
within the Mathematics Center it has been a tradition to let each
person function the way they do best. We don’t expect someone to



22 Three Degrees Above Zero

come in each day and prove two theorems and a corollary before lunch.
If you're in the mood, and things are rolling, and you think you have
the right insight, you can work. If a problem has really gotten to you,
you know you are going to work on it night and day. If not, you are
probably going to do a certain amount of paper-shuffling to pass time.
Of course in universities you have teaching, which, in a sense, can
justify why you are getting paid even when your research is not going
well.”

This discussion raised a basic question about the Laboratories, and
I wanted to get Graham’s reaction to it. Universities have a built-in
mechanism for dealing with people who have passed their peak research
years: they can do more teaching and administration. I was also aware
that mathematicians, like many scientists working in these more ab-
stract fields, tend to “burn out” after their forties. Indeed, one of the
great problems confronting all but the very best universities is that the
average age of their department members is steadily increasing, owing
to a mixture of tenure and economics. Tenure guarantees a job for life,
and there is not enough additional money to hire young people. Hence
many departments are more and more filled up with aging, tenured
professors who are, at least in these very abstract fields, less and less
productive. Graham said that the average age at the Mathematics
Center was definitely below forty. This raised the obvious question of
how this favorable age distribution was maintained. He responded,
“There is one fundamental way in which Bell Labs is different from
a university. There is no tenure here. There is what you might call a
weak moral tenure. However, there certainly have been people here
who have done good work for a number of years early in their careers,
but as time went on they did less and less, until finally, so to speak, they
just somehow died. Such people need some real new impetus to get
them going again, and there is certainly the mechanism here to provide
that. Our vice-president, for example, could say, ‘Now you are over
there in, for example, a developmental area,” which means you are
either ‘over there’ or you are out. But I think that the strong factor that
motivates people here comes from within the people themselves. Good
people here aren’t held with their noses to the grindstone.

“No one says, ‘You will now do this problem, and then you will do
that problem.” Because if you want the very best people to do their best
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work you must give them an environment that allows them to do that.
I think what happens here is that after a few years, during which you
have been doing work and getting a reasonable salary with no onerous
demands placed on you—time and energy—you can feel something
that I wouldn’t say is quite guilt. It’s rather more like an internal
motivation. You say to yourself, ‘Let me take another look to see if
there is something I can do now that would be really useful for the good
of Bell Laboratories.” That’s actually quite a strong motivating factor.
Many people here go through this kind of soul-searching during their
first few years here.

“They ask themselves, ‘Why am I here? What am [ doing here?
Why am I being paid?’ and so on. The Mathematics Center has
traditionally been a breeding ground for upper-management personnel.
People often get promoted kind of diagonally—up and out of pure
research—or get put into other areas that are more development-
oriented, which don’t make the same kinds of demands on one’s re-
search abilities. This has certainly been responsible for some of the bias
we have in our age distribution in the center.”

Graham’s own research spans both pure and applied mathematics.
In 1972 he shared with two other mathematicians the prestigious Polya
Prize for his work in “Ramsey theory,” an odd branch of pure mathe-
matics that has to do with finding unexpected order in apparently
random mathematical situations. For example, if one arranges the
numbers 1 through 101 in any random order, the theory guarantees
that there will always be at least eleven numbers arranged in increasing
order or at least eleven in decreasing order, so, to that extent, no
arrangement is entirely random. Until recently no one had found any
application for results like this; but Ramsey theory is now being used
in the design of data networks. These are, by and large, the sort of
intellectual curiosities that mathematicians delight in.

In contrast, much of Graham’s more recent work has had to do with
the kind of practical problems that arise from situations like setting
Private Line tariffs. Indeed, he initiated a branch of mathematics that
he calls the “worst-case analysis.” He became interested in this in the
1960’s, when Bell Laboratories got involved in writing the software for
the then-proposed antiballistic-missile system. Graham knew some of
the people working on the problem, which basically involved how to
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optimize the scheduling of a large number of interrelated tasks—in this
case, identifying and locating fleets of incoming missiles. They had
discovered that the order in which these tasks were performed made
a crucial difference to the end result. More surprising, they also had
discovered that an order that appeared good could really be very bad,
if each task took a certain amount of time, and if this time were
reduced. Prior to this discovery, it was assumed that by adding comput-
ers, thereby reducing the waiting time for certain jobs to get started,
it would be possible to reduce the time it took to do the whole job. It
turned out that adding more computers could actually make things
worse. There might be no limit to how bad you could make the overall
efhiciency simply by doing what, at first, seemed reasonable: bringing
more computers to bear on the problem. Graham was able to prove that
this was not so. There is a limit to how badly one can make the overall
efficiency by adding computers in a problem like this. The fact that
such a limit exists enabled Graham to make what he calls “performance
guarantees.” If one follows certain rules, no matter how quickly or in
what order various tasks are done, the end result cannot depart from
the best way of doing the tasks by a certain percentage, which, in many
cases, Graham could calculate explicitly. One of the situations he
analyzed was the NASA Apollo Mission, where three astronauts were
asked to accomplish various tasks. The question arose how much worse
would their overall performance have been if, following a certain set
of rules, they had carried out their tasks in the worst possible way.
Among the rules was one that said that if an astronaut were free to do
something he should be doing it and once started on that task he should
finish it. In this case Graham showed that the worst case was only 40
percent less efficient than the best case.

There is another example of this kind of analysis that Graham likes
to give because it is simple to state although very nontrivial to study.
Suppose that one is given five weights, two of them weighing three
pounds and three of them weighing two pounds. Is it possible to find
a strategy—an algorithm—that can be used to divide the weights into
two piles which have nearly the same weight. This case is so simple that
by trial and error—which is hardly an algorithm-—one sees that the
solution is to have a pile with two weights weighing three pounds and
another pile with three weights weighing two pounds. Each pile will
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then have a total weight of six pounds. But suppose one wishes to give
a systematic method for doing this and one insists that this method will
give the best answer in the general case involving any collection of
weights. As far as anyone knows this is not a “tractable” problem.
There is no known algorithm that would enable a computer, or, as
Graham put it, even “a New Jersey full of Crays” to solve the general
case in any reasonable time. There are algorithms for sorting them into
piles, but there is no guarantee that any of these algorithms will pro-
duce the best solution. Graham gave me an example of a simple algo-
rithm, which can be applied to the five weights discussed above.

1. First take the weights and arrange them in order of decreasing weight.
We would have then the five weights arranged in the order 3,3,2,2,2.

2. Now we begin arranging these weights into two piles by the strategy
of putting the heaviest weight in one pile and the second heaviest in the other
pile. So in this case we have one 3-pound weight in each of the two piles.

3. Take the next heaviest weight, 2, and put it into the lighter pile which
will tend to even things out. We now have the piles arranged 3,2 and 3,2.

4. Keep repeating the last instruction until all the weights have been
placed. In our case we end up with the piles 3,2,2 and 3,2. But this has
produced an uneven division, and we know that the best solution is an even
division 3,3 and 2,2,2. How much of a mistake have we made? The algorithm
gives us a heavy pile of 7 while the “correct” answer—the best answer—is 6
so we are 7/6 off. We can see all of this by inspection here, but Graham proved
that if one used this algorithm for any collection of weights one would never
do worse than being off by this same factor of 7/6. The algorithm will not
be wrong by more than about 14 percent which is the “performance guaran-
tee” for this algorithm.

Like so many of the people 1 talked to at Bell Labs, Graham is
worried that the divestiture will change the character of the place—
and not for the better. The hiring pattern at the Mathematics Center
has already changed: there is now an almost exclusive emphasis on
experts in computer science, a very broad subject covering everything
from artificial intelligence to the kind of scheduling problems on which
Graham is such an expert. Indeed, shortly after my visit he was on his
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way to the California Institute of Technology, where he functioned as
a kind of “interface” between computer scientists and pure mathemati-
cians. He also gave some of his informal “seminars” in juggling, which
are immensely popular with students.

Graham told me that the universities are now producing something
like 200 Ph.D.’s a year in computer science, well below what companies
like AT&T and IBM—Iet alone, all the universities—can absorb. He
worries that industry will gobble up the entire crop of computer science
Ph.D.s, leaving no one to teach. Few universities can compete with
the salaries and working conditions that a place like Bell Labs can offer.
At Graham’s suggestion, some members of his own group have been
split off into a computer science group within the Mathematics and
Statistics Center—in the hope of strengthening ties between mathe-
matics and theoretical computer science—and Bell Labs has just
created a house organ in which they can publish. The Bell System
Technical Journal may be unique among industrial publications, in that
it is produced by a company but contains results of such fundamental
importance that workers in certain fields must read it regularly if they
are to keep up. At Stanford University, where Graham taught in 1982,
the mathematics department had only five or six new graduate students
in mathematics; computer science, a very strong specialty at Stanford,
had hundreds of applicants. “People know where the exciting problems
are,” he remarked, “and they have to eat too.”

Graham gave me an example of the kind of thing that worries him
about the future at Bell Labs. A member of his group is one of the
world’s greatest experts in the theory of probability. Some years ago his
son was stricken with a brain tumor. Graham’s colleague became in-
tensely interested in how such tumors can be detected with CAT
scanners. This is basically a mathematics problem—the reconstruction
of a three-dimensional volume from two-dimensional projections of it.
The scanner produces various projections of a mathematical function
and the problem is to find an algorithm by which the function itself
can be reconstructed from these projections. This is the practical prob-
lem of using such a scanner to locate a diseased area in a three dimen-
sional volume. Bell Laboratories is not in the tomography business,
although it does do research on machines used for medical diagnostics.
(For example, the standard machine used for the bilirubin test on blood
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plasma—to test liver function—was invented at Bell.) At first, some of
the upper management was not very pleased with the proposed switch-
over, but Graham’s colleague persisted, and on his own initiative he
spent six months at a Boston hospital studying tomography. Ultimately
he became one of the world’s leading experts in computer tomography
and recently won an important prize for this work. Graham said this
was then “not an atypical sort of switchover of fields for someone who,
as in this case, was extremely talented and whom you really trusted. Our
feeling was that what he was going to do might take a few years, but
that was O.K. We would still be here. Now there is a certain concern,
hard to put your finger on exactly, that this long-view atmosphere may
get shortened. When I came here there was the attitude that although
you were not supposed to do things that were completely irrelevant to
the basic mission of the Labs—communication—it was all right if you
did something that might have a feedback in ten, fifteen, or even
twenty years. We have many examples of things that someone did, and
it was only twenty years later that we found that we really needed it,
that it was a good thing we had it. The window may now shrink to five
years, three years . . . next month.

“There is a term that is used around Bell Laboratories—fire
fighting’—which is what a lot of the people at Murray Hill and other
places such as Holmdel do a fair amount of. They have specific prob-
lems with deadlines. For example, just down the hall there are some
people working on an electron-beam method that will be used to etch
circuits on chips. They have a very precise deadline. But that kind of
research has limitations. The major developments are unexpected. If
you really knew what you were trying to do, that would often be the
biggest part of the battle. There does not seem to be any obvious way
of knowing how some development here will impact on something over
there. You just hope you have good people who are excited and that
they can communicate.”



