2.1 The geometry of real valued functions

A function f that takes n inputs and gives m outputs is called vector valued if $m > 1$ and scalar valued if $m = 1$.

We write $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $\mathbf{x} \rightarrow f(\mathbf{x})$.

Example: the function $f: \mathbb{R}^3 \rightarrow \mathbb{R}$ given by $(x,y,z) \mapsto x^2 + y^2 + z^2$ is scalar valued, whereas

$f: \mathbb{R}^3 \rightarrow \mathbb{R}^2$, $(x,y,z) \mapsto (x^2 + y^2 + z^2, x + y + z)$

is vector valued.
We can associate to a function $f : \mathbb{C} \rightarrow \mathbb{R}$ a graph.

\[f : (a, b) \subseteq \mathbb{C} \rightarrow \mathbb{R} \]

Here, the graph is a curve.

\[f : \mathbb{C} \rightarrow \mathbb{R}^2 \]

Here, the graph is a surface.
2.2 Limits & Continuity

We'll need a couple of definitions before we talk about limits.

Open set: Let U be a subset of \mathbb{R}^n (written $U \subset \mathbb{R}^n$). We say that U is an open set if for every $x_0 \in U$ there is some number $r > 0$ such that every point with $\|x - x_0\| < r$ is within U.

- \mathbb{R}: any interval $(a, b) \subset \mathbb{R}$ is open.

Intuitively: U is open when the boundary points of U are not in U.

- A point $z \in U$ is on the boundary of U if every neighborhood of z contains at least one point in U and one point not in U.

\[z \text{ is on the boundary} \]
Limits

Remember that in standard one-dimensional calculus, we used limits to study continuity, define derivatives, improper integrals, ...

We would like to generalize this notion to functions of several variables.

Definition: Let $A \subset \mathbb{R}^n$ be an open set and let $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$. Let \bar{z}_0 be in A or be on the boundary of A.

We write $\lim_{x \to \bar{z}_0} f(x) = \bar{b}$ when given any neighborhood U of \bar{b} (i.e., an open set containing \bar{b}), f is eventually in U as \bar{z} approaches \bar{z}_0.

If f does not approach any vector as $x \to \bar{z}_0$, we say the limit does not exist.
Properties of limits

- If \(\lim_{x \to x_0} f(x) = b_1 \) and \(\lim_{x \to x_0} g(x) = b_2 \) then \(\lim_{x \to x_0} (f(x) + g(x)) = b_1 + b_2 \)

- If \(\lim_{x \to x_0} f(x) = b_1 \) and \(\lim_{x \to x_0} g(x) = b_2 \) then \(\lim_{x \to x_0} c f(x) = c b_1 \)

- When \(m = 1 \) (i.e., \(b_1 \) and \(b_2 \) are scalars) \(\lim_{x \to x_0} f(x) g(x) = b_1 b_2 \)

- When \(f(z) = (f_1(z), f_2(z), \ldots, f_m(z)) \) then \(\lim_{x \to x_0} f(z) = \mathbf{b} = (b_1, b_2, \ldots, b_m) \) if and only if \(\lim_{x \to x_0} f_i(x) = b_i \) for \(i = 1, 2, \ldots, m \).

Examples:
Let \(f : \mathbb{R}^2 \to \mathbb{R} \), \((x,y) \to x^2 + y^2 \)

Compute \(\lim_{(x,y) \to (0,0)} f(x,y) \)
Solution: \[\lim_{(x,y) \to (0,0)} f(x,y) = \lim_{(x,y) \to (0,0)} x^2 + y^2 = \lim_{(x,y) \to (0,0)} x^2 + \lim_{(x,y) \to (0,0)} y^2 = 0^2 + 1^2 = 1 \]

Example: Use polar coordinates to find the limit (if it exists)
\[\lim_{(x,y) \to (0,0)} \frac{7x^2}{x^2 + y^2} \]

Solution: \[\lim_{(r,\theta) \to (0,0)} \frac{7r^2 \cos^2 \theta}{r^2} = \lim_{r \to 0} 7 \cos^2 \theta = 7 \]

Example: Find the limit or show it doesn't exist
\[\lim_{(x,y) \to (0,0)} \frac{7x^2}{x^2 + y^2} \]

Solution: To show the limit doesn't exist, we can approach \((0,0)\) from 2 different directions. First, fixing \(y=0\) and letting \(x \to 0\) we get \[\lim_{(x,y) \to (0,0)} \frac{7x^2}{x^2} = \lim_{x \to 0} 7x^2 = 0 \]
Second, fixing \(x=y\), we get \[\lim_{(x,y) \to (0,0)} \frac{7x^2}{x^2 + y^2} = \lim_{x \to 0} \frac{7x^2}{2x^2} = \frac{7}{2} \]
Continuous functions:

Definition: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a given function and let $x_0 \in A$. We say that f is continuous at x_0 if and only if

$$\lim_{{x \to x_0}} f(x) = f(x_0)$$

If f is continuous at every point in A, we say that f is continuous.
Example: \(f(x) = 2x^2 + 3x + 5 \) is continuous
(why?)

Example: \(f(x, y) = xy \) is continuous

because \(\lim_{(x, y) \to (x_0, y_0)} xy = (\lim_{x \to x_0} x)(\lim_{y \to y_0} y) = x_0 y_0 = f(x_0, y_0) \)

for all points \((x_0, y_0)\)

Example: \(f(x, y) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases} \) is not cont.
(why? Think about \(\lim_{(x, y) \to (0, 0)} f(x, y) \))

Properties: Suppose \(f \) & \(g \) are continuous at \(x_0 \):

\[f + g \] is also continuous at \(x_0 \)

\[cf \] is also continuous (\(c \) is a real number)

\[f + g \] is also continuous at \(x_0 \)

when \(f \) & \(g \) are functions from \(\mathbb{R}^n \) to \(\mathbb{R} \)

\(fg \) is continuous at \(x_0 \)

Let \(f(x) = (f_1(x), f_2(x), \ldots, f_m(x)) \), then \(f \) is cont. if and only if the \(f_i \)'s are all cont.
Compositions of continuous functions are continuous:

If \(g \) is continuous at \(x_0 \) and \(f \) is continuous at \(y_0 = g(x_0) \), the \(f \circ g \) is continuous at \(x_0 \).

(Recall that \((f \circ g)(x) = f(g(x)) \).

2.3 Differentiation:

Partial derivatives

Recall from single variable calculus that we defined for \(f: \mathbb{R} \to \mathbb{R} \), the derivative as

\[
\frac{df}{dx}(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \text{rate of change of } f \text{ as } x \text{ changes}
\]

(when the limit exists)

When we have a function of several variables, i.e.,
\(f: \mathbb{R}^n \to \mathbb{R} \) (for example \(f(x, y) = x^2 + y^2 \)),
we can define the rate of change of \(f \) in each of the \(n \) direction (in our example it would be \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \)).
Let $U \subseteq \mathbb{R}^n$ be open and suppose $f: U \rightarrow \mathbb{R}$

then the partial derivatives of f at the point (x_1, x_2, \ldots, x_n) are defined by

$$\frac{\partial f}{\partial x_1}(x_1, x_2, \ldots, x_n) = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \ldots, x_n) - f(x_1, x_2, \ldots, x_n)}{h}$$

$$\frac{\partial f}{\partial x_2}(x_1, x_2, \ldots, x_n) = \lim_{h \to 0} \frac{f(x_1, x_2 + h, x_3, \ldots, x_n) - f(x_1, x_2, x_3, \ldots, x_n)}{h}$$

$$\frac{\partial f}{\partial x_j}(x_1, x_2, \ldots, x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, \ldots, x_j + h, \ldots, x_n) - f(x_1, x_2, \ldots, x_j, \ldots, x_n)}{h}$$

$$= \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$

where $e_j = (0, 0, \ldots, 1, 0, \ldots)$

Example: Let $f(x, y) = x^2 + xy^3$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^2 + xy^3) = 2x + y^3$$

(think of y as just a constant)

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^2 + xy^3) = 3xy^2$$

(think of x as just a constant)
Example: \(z = \ln(x^5 + y^4) \) \[\frac{\partial z}{\partial x} = \frac{x^5 y^4}{x^5 + y^4} \] \[\frac{\partial z}{\partial y} = \frac{y^4 x^5}{x^5 + y^4} \] (All standard rules of differentiation apply)