1 Lebesgue Theory

1.1 Set functions

Definition 1.1 A family of sets \mathcal{R} is called a ring if

$$A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R} \text{ and } A \setminus B \in \mathcal{R}.$$

Thus, a ring is closed under finite unions and set differences (as well as finite intersections).

Definition 1.2 A σ-ring is a ring that is also closed under countable unions, i.e.,

$$A_n \in \mathcal{R}, n = 1, 2, \ldots \implies \cup_n A_n \in \mathcal{R}.$$

It can be deduced that a σ-ring is also closed under countable intersections.

Definition 1.3 A set function on a ring (or σ-ring) assigns to every element of \mathcal{R} a number (in the extended reals).

Definition 1.4 A set function f is additive if for disjoint sets $A, B \in \mathcal{R}$,

$$f(A \cup B) = f(A) + f(B).$$

Definition 1.5 A set function f is countably additive if for disjoint sets $A_i \in \mathcal{R}, i = 1, 2, \ldots$

$$f(\cup A_i) = \sum_{i=1}^{\infty} f(A_i).$$

Theorem 1.6 Suppose f is a countably additive function on a σ-ring \mathcal{R}. Let $A_n \in \mathcal{R}, n = 1, 2, \ldots$ with $A_1 \subset A_2 \subset \ldots$ and suppose that $A := \bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$.

Then
\[
\lim_{n \to \infty} f(A_n) = f(A).
\]

1.2 Construction of the Lebesgue measure

Definition 1.7 An interval in \(\mathbb{R}^p \) is a set of the form \(I = [a_1, b_1] \times ... \times [a_p, b_p] \).

Definition 1.8 An elementary set is a finite union of intervals.

Definition 1.9 For an interval \(I \), define the set function \(m \), via
\[
m(I) := \prod_{i=1}^{p} (b_i - a_i).
\]

Definition 1.10 For a finite disjoint union of intervals \(I_i \), set
\[
m \left(\bigcup_{i=1}^{n} I_i \right) := \sum_{i=1}^{n} m(I_i).
\]

Definition 1.11 Denote by \(\mathcal{E} \) the collection of all elementary subsets of \(\mathbb{R}^p \).

Remark 1.12 \(\mathcal{E} \) is a ring, but not a \(\sigma \)-ring. Elements of \(\mathcal{E} \) can be decomposed as finite, disjoint unions of intervals.

Remark 1.13 The function \(m \) defined above is additive on \(\mathcal{E} \).

Definition 1.14 (Regularity) A non-negative, additive set function \(f \) defined on \(\mathcal{E} \) is regular if
\[
\forall A \in \mathcal{E}, \epsilon > 0, \exists F, G, \in \mathcal{E}, \text{ where } F \text{ is closed and } G \text{ is open},
\]
and
\[
F \subset A \subset G,
\]
with
\[
f(G) - \epsilon \leq f(A) \leq f(F) + \epsilon.
\]

Example 1.15 The set function \(m \) defined above is regular on \(\mathcal{E} \).

Definition 1.16 (Outer measure) Let \(\mu \) be a non-negative, additive, finite, regular set function defined on \(\mathcal{E} \). The outer measure of \(E \subset \mathbb{R}^p \) is given by
\[
\mu^*(E) = \inf \sum_{n=1}^{\infty} \mu(A_n)
\]
where the infimum is taken over all countable covers of E by elementary open sets.

Fact 1.17 The following are simple to deduce from the definition:

$$
\mu^*(E) \geq 0,
$$

$$
E_1 \subset E_2 \implies \mu^*(E_1) \leq \mu^*(E_2).
$$

Theorem 1.18 Let μ be finite, non-negative, additive, regular, then μ^* agrees with μ on elementary sets, and it is countably sub-additive. That is,

(a) $A \in \mathcal{E} \implies \mu^*(A) = \mu(A),$

(b) $E = \bigcup_{i=1}^{\infty} E_i \implies \mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i).$

Definition 1.19 (Convergence) We say that a sequence of sets A_n converges to A if

$$
\lim_{n \to \infty} d(A, A_n) = 0,
$$

where for two sets A and B we define

$$
d(A, B) := \mu^* ((A \setminus B) \cup (B \setminus A)).
$$

Notice that the notion of coverage above depends on the choice of μ.

Definition 1.20 (Finitely μ-measurable sets) If there is a sequence of elementary sets converging to A, we say A is finitely μ-measurable; we write $A \in M_F(\mu)$.

Definition 1.21 (μ-measurable sets) If A is a countable union of finitely μ-measurable sets, we say that A is μ-measurable; we write $A \in M(\mu)$.

Theorem 1.22 $M(\mu)$ is a σ-ring and μ^* is countably additive on $M(\mu)$.

Thus we may now replace $\mu^*(A)$ by $\mu(A)$ – and we can call μ a measure. When $\mu = m$, we call it the Lebesgue measure.

Definition 1.23 A Borel set is a set that can be obtained via countable unions, countable intersections, and/or set differences, complements, of open sets.

Remark 1.24 The collection of Borel sets in \mathbb{R}^p is a σ-ring. In fact, it is the smallest σ-ring containing all open sets.

Remark 1.25 Every $A \in M(\mu)$ is the union of a Borel set and a set of measure zero.
2 Measure spaces

Definition 2.1 Let X be some set. If there exists a σ-ring \mathcal{M} of subsets of X (called measurable sets) and a non-negative countable additive set function μ (called a measure) defined on μ, then X is called a measure space. We often write (X, \mathcal{M}, μ) to identify the σ-ring and measure associated with X.

Definition 2.2 We say that a function f defined on a measurable space \mathcal{M} is measurable if
$$\{x | f(x) > a\}$$
is measurable (i.e., belongs to \mathcal{M}) for all a.

Theorem 2.3 The following are equivalent:
- $\{x | f(x) > a\}$ is measurable for all real a.
- $\{x | f(x) \geq a\}$ is measurable for all real a.
- $\{x | f(x) < a\}$ is measurable for all real a.
- $\{x | f(x) \leq a\}$ is measurable for all real a.

Theorem 2.4 The inf, sup, lim inf, and lim sup of a sequence of measurable functions are measurable. The limit of a converging sequence of measurable functions is measurable.

Theorem 2.5 Suppose that f and g are measurable functions, then
- $|f|$ is also measurable
- $\max(f, g), \min(f, g), f^+ = \max(f, 0), f^- = -\min(f, 0)$ are measurable.

Theorem 2.6 If f, g are measurable real-valued functions on X, and $F : \mathbb{R}^2 \to \mathbb{R}$ is continuous, then h defined via
$$h(x) = F(f(x), g(x)), x \in X$$
is measurable. For example, this implies the sum and product of measurable functions is measurable.

Remark 2.7 Notice that the way we define measurable functions does not really require a measure, only a σ-ring \mathcal{M}.

4