Math 174, Fall 2018 Review for Midterm 1 (Based on problems originally prepared by Marc Loschen)

Problem 1. Let $f(x) = e^x$.

- (a) Find the Taylor Series for f about the point x = 0. Include two or three versions of the remainder term.
- (b) Find the minimum number of terms needed to compute e with an error less than 10^{-8} .
- (c) Find the minimum number of terms needed to compute e^2 with an error less than 2^{-m} . Your answer should be an inequality.
- (d) Suppose we use the Taylor polynomial of degree n = 2 to compute e. Determine the error bound given by this approximation.

Problem 2. Find the order of convergence for each of the following sequences.

(a) $x_n = 3^{-n} + 1$ (b) $x_{n+1} = \frac{1}{2}x_n$, with $x_0 \in \mathbb{R}$ (c) $x_{n+1} = \frac{1}{2}x_n^p$, with $x_0 \in \mathbb{R}$ and $p \ge 1$ (d) $x_{n+1} = \frac{1}{2}(x_n^2 + 1)$, with $x_0 \in (0, 1)$. (e) $x_n = \frac{1}{n!}$ (f) $x_{n+1} = x_n \left(3 - \frac{x_n}{a}\right)$, where a > 0. (g) $x_{n+1} = \frac{1}{2}\left(x_n + \frac{a}{x_n}\right)$, where a > 0.

Problem 3. Prove the following statements.

(a) $5n^{3} + 9n^{2} + 1 = \mathcal{O}(n^{3})$ (b) $5n^{3} + 9n^{2} + 1 = \mathcal{O}(n^{4})$ (c) $5n^{3} + 9n^{2} + 1 \neq \mathcal{O}(n^{2})$ (d) $\frac{1}{n^{2}} = o(\frac{1}{n})$ (e) $\frac{1}{n^2} \neq o(\frac{1}{n^2})$

Problem 4. Let $\{x_n\}, \{y_n\}$ and $\{\alpha_n\}$ be sequences in \mathbb{R} . Prove the following statements.

- (a) $x_n = x + o(1)$ if and only if $\lim_{n \to \infty} x_n = x$.
- (b) If $x_n = \mathcal{O}(\alpha_n)$, then $cx_n = \mathcal{O}(\alpha_n)$, where c is a constant.
- (c) If $x_n = \mathcal{O}(\alpha_n)$ and $y_n = \mathcal{O}(\alpha_n)$, then $x_n + y_n = \mathcal{O}(\alpha_n)$.
- (d) If $x_n = o(\alpha_n)$ and $y_n = o(\alpha_n)$, then $x_n + y_n = o(\alpha_n)$.
- (e) If $x_n = \mathcal{O}(\alpha_n)$, $y_n = \mathcal{O}(\alpha_n)$, and $\alpha_n \to 0$, then $x_n y_n = o(\alpha_n)$.

Problem 5. Let F be a C^1 function, and suppose the sequence $\{x_n\}$ is defined by $x_{n+1} = F(x_n)$. Assume $\lim_{n\to\infty} x_n = x \in \mathbb{R}$. Use the Mean Value Theorem to show that $x_{n+2} - x_{n+1} = O(x_{n+1} - x_n)$.

Problem 6. Let [a, b] be an interval in \mathbb{R} . Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function such that f(a) and f(b) have different signs, and let r be a zero of f, i.e. f(r) = 0. Prove that the error e_n in approximating r with the Bisection Method is bounded as follows:

$$|e_n| \le 2^{-(n+1)}(b-a)$$

Problem 7. Consider running the Bisection method with the starting interval [1, 4]. Determine the number of steps n that need to be taken to guarantee the error bound $|r-c_n| \leq 10^{-8}$.

Problem 8. Consider this problem: we are trying to approximate the square root of 3.

- (a) Formulate this problem as a root-finding problem.
- (b) Find two numbers a, b such that $a^2 < 3 < b^2$. Then, considering the interval [a, b], find the error given by the Bisection method after n steps.
- (c) Derive the Newton iteration for this problem.
- (d) Derive the Secant iteration for this problem.

Problem 9. Devise a Newton iteration to compute the *n*th root of a positive number α .

Problem 10. Perform two iterations of Newton's method on the following problems.

- (a) $x^2 5x + 6 = 0$, with $x_0 = 1$
- (b) $4 x^4 = x^3$, with $x_0 = 1$
- (c) $e^{-x} x = 0$, with $x_0 = 0$

Problem 11. Perform two iterations of the Secant method on the following problems.

- (a) $x^2 5x + 6 = 0$, with $x_0 = 0, x_1 = 1$
- (b) $4 x^4 = x^3$, with $x_0 = 1, x_1 = 2$
- (c) $e^{-x} x = 0$, with $x_0 = 0, x_1 = 1$

Problem 12. Do the following functions have a fixed point in the indicated interval? Provide an argument in either case.

- (a) $F(x) = \frac{1}{8}(x-2)^2$ in [0,1]
- (b) $F(x) = e^{-x} x$ in [0, 1]
- (c) $F(x) = \sin(x) x$ in [0, 1]

Problem 13. Consider the fixed-point problem F(x) = x. Devise a Newton iteration for this problem (i.e., for finding the fixed point).

Problem 14. Given an interval [a, b], let $F \in C^1([a, b])$ and suppose $|F'(x)| \leq 1$ on [a, b] and that $F(x) \in [a, b]$ for all $x \in [a, b]$. Prove that F has a fixed point in [a, b].

Problem 15. Consider the following data tables:

- (a) Find the Lagrange form of the interpolating polynomial for each data set.
- (b) Find the Newton form of the interpolating polynomial for each data set.
- (c) Verify that your answers to (a) and (b) simplify to the same polynomial.
- (d) Add the point (3, 1) to each data table above, and find the interpolation polynomial for the modified data sets.

Problem 16. Consider the following data table:

- (a) Find the Lagrange form of the interpolating polynomial for this data.
- (b) Find the Newton form of the interpolating polynomial for this data.
- (c) Verify that your answers to (a) and (b) simplify to the same polynomial.

Problem 17. Consider the following data table:

- (a) Find the Lagrange form of the interpolating polynomial for this data.
- (b) Find the Newton form of the interpolating polynomial for this data.

Problem 18. Consider the following data table:

- (a) Find the Lagrange form of the interpolating polynomial for this data.
- (b) Find the Newton form of the interpolating polynomial for this data.