Discrete Fourier Transform
Suppose $x \in \mathbb{C}^{N}$, then the N-point $D F T$ of x is given by

$$
\begin{aligned}
& F: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N} \\
& x \mapsto \hat{x} \text { with } \\
& \hat{x}(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_{n} e^{-2 \pi i k n / N}
\end{aligned}
$$

so

$$
\begin{array}{r}
\hat{x}(k)=\left\langle x, \varphi^{(k)}\right\rangle=\varphi^{(k)^{*}} x \\
\varphi^{(k)}=\left(\begin{array}{c}
1 \\
e^{2 \pi i k / N} \\
e^{2 \pi \cdot / 2 k / \nu} \\
\vdots \\
e^{2 \pi i \cdot(\omega-j k)}
\end{array}\right) \cdot \frac{1}{\sqrt{N}}
\end{array}
$$

(= inner product with complex exponential of frequency k / N)
Matrix representation:
Let $\omega:=\omega_{N}=e^{-2 \pi i / N}=N^{\text {th }} \operatorname{sot}$ of unity

$$
\begin{aligned}
& \hat{x}=F x \\
& \hat{x}=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & & \omega^{2 N-2} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{N-1} & \omega^{2 N-2} & \omega^{(1-1)^{2}}
\end{array}\right] x \\
& \underbrace{\left[\begin{array}{ll}
\text { D }
\end{array}\right.}_{D F T \text { Matrix (note the adjoint) }}
\end{aligned}
$$

Theorem: F is a unitary matrix
Proof: Check that $\left\langle\varphi^{(k)}, \varphi^{(l)}\right\rangle=\delta_{k, e}$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
1, k e l \\
0,0 t h
\end{array}\right.
\end{aligned}
$$

Corollary: $\quad \hat{x}=F x$

$$
\Rightarrow x=F^{\star} \hat{x}
$$

Inverse $D F T$.

Some comments:
Continuous time Fourier transform:

- $F \in L^{\prime} \quad$ (or L^{2} with appropriate work)

$$
\begin{array}{r}
\hat{f}(\omega)=c \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \approx\left\langle f, \varphi_{\omega}\right\rangle \\
\varphi_{\omega}(t)=e^{-i \omega t}
\end{array}
$$

gives the "coefficients" of f at frequency ω.

- The DFT gives the frequency coefficients of x at Frequency $\frac{k}{N}$.

Convenient Properties of the DFT

$$
\text { - } x(n)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{x}(k) e^{2 \pi i k+/ N}
$$

$$
\begin{aligned}
& =\left\langle\hat{x}, \bar{\varphi}^{(k)}\right\rangle \\
& \text { (Inversien) } \\
& \text { • } \left.\begin{array}{rl}
x & \longmapsto \hat{x} \\
y & \longmapsto \hat{y}
\end{array}\right\} \Rightarrow \underbrace{\langle x, y\rangle=\langle\hat{x}, \hat{y}\rangle}_{\text {Parsenal }} \\
& \text { - } \left.\|x\|^{2}=\|\hat{x}\|^{2} \quad \underset{n}{\longrightarrow \sum_{n=0}^{N-1}\left|x_{n}\right|^{2}}\right\} \text { Plancharel }
\end{aligned}
$$

- Phase shift:

Suppose $x \longmapsto \hat{x}$
Let $y: y(n)=x(n) e^{2 \pi i m n / n}$
then $\hat{y}(k)=\hat{x}(k-m)$ prool 3 exercise (change of variable

- Convolution: (circular)

Define the circular convolution of $a, b \in \mathbb{C}^{N}$ bay

$$
(a \circledast b)_{n}:=\sum_{l=0}^{N-1} a_{l} b_{(n-l) \bmod N}
$$

Then

$$
\text { (I) if } x \mapsto \hat{x}, y \mapsto \hat{y}
$$

$$
\frac{1}{\sqrt{N}}(x \circledast y)_{n}=[F^{-1}(\hat{x} \odot \underbrace{0}_{\dot{y}} \hat{y})]_{n}
$$

pointwise multiplication
(II)

$$
\begin{aligned}
F(x \odot y)_{k} & =\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_{n} y_{n} e^{-2 \pi i l_{n}} N \\
& =\frac{1}{\sqrt{N}}(\hat{x} \otimes \hat{y})_{k}
\end{aligned}
$$

Proof 0 HW

Corollary: The DFT matrix diagonalizes any irculant matrix.

Applications: (just a couple of examples)

- Signal analysis: understanding the frequency content os a signal
- extension: STDF T

$$
\begin{aligned}
x \in \mathbb{C}^{N} \mapsto & \tilde{x}: \tilde{x}(t, l)= \\
& C \sum_{n=0}^{N-1} x(n) \underbrace{W} \underset{ }{W}(n-l) e^{-2 \pi i k n / N} \\
& \text { or appactly supporimateled so }
\end{aligned}
$$

Exercise: "Visualye the STFT of a few seconds of muster

- use W supported on approximately $60-120 \mathrm{msec}$.
- Compression (e.g. Via the DC J) JPEG works this way.
- Major advantage: the Fast Fourier Transform algoith.
Normally to compute a matrix-vector product of the form

$$
\begin{aligned}
\hat{x}= & F_{-} x_{N \times N} \\
& Y_{N \times 1}
\end{aligned}
$$

we need $O\left(N^{2}\right)$ operations. In the case of the DFT, the FFT algoith allousus to do it in $O(N \log N)$.

Idea (Cooly-Tukey 1965, Gauss?) Let $N=2^{n}$ and ignore the $\frac{1}{\sqrt{N}}$ normalization for now.

$$
\begin{aligned}
\hat{x}_{k} & =\sum_{n=0}^{N-1} x_{n} e^{-2 \pi i k n / N} \\
& =\sum_{n \text { even }}()+\sum_{\text {mod }}()
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\sum_{\substack{m / 2}}^{N / 1} x_{2 m} e^{-2 \pi i(2 m) k_{N}} N}_{e_{k}} \\
& +\underbrace{\sum_{m=0}^{N / 2-1} x_{2 m+1} e^{-2 \pi i(2 m+1) k / N}}_{O_{k}} \underbrace{\sum_{m=0}^{M /-1} x_{2 n+1} e^{-2 \pi i \frac{k m / 2 / 2}{m}}}_{e^{-2 \pi i k / N}} \\
& \text { So } \begin{aligned}
\hat{x}_{k} & =e_{k}+e^{-2 \pi i k / N} O_{k} \\
& \frac{N}{2} \begin{array}{c}
\text { point } \\
D F T
\end{array} g^{2 / 2}\left(x_{1}, x_{3}, \cdots, x_{2-1}\right)
\end{aligned} \\
& \text { of }\left(x_{0}, x_{2}, \ldots, x_{2 n-2}\right)
\end{aligned}
$$

for $k \in\{0, \ldots, N / 2-1\}$
Similarly

$$
\hat{x}_{k+N / 2}=e_{k}-e^{-2 \pi i k / N} o_{k}
$$

for $k \in\{N / 2, \ldots, N-1\}$

How, we can compute each of the $2 \mathrm{~N} / 2 p^{+} D F T_{\mathrm{s}}$ by repeating this even/odd spliftive

$$
\left.\begin{array}{rl}
\Rightarrow \mathrm{N} / 4 \text { p+ DFT } & \rightarrow N / 8 \text { pt DFT } \\
& \rightarrow \cdots \rightarrow 2 p+D F T \\
(\text { Butterfly }
\end{array}\right) \in\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Examples:
2 pt DFT:

write this as

$$
\begin{aligned}
& x_{0}-F_{2}-\hat{x}_{0} \\
& x_{1}-\hat{x}_{1}
\end{aligned}
$$

4 pt DFT
Recall $\hat{x}_{k}=e_{k}+e^{-2 \pi i / / /} O_{k}$

$$
\hat{x}_{k+1 / 2}=e_{k}-e^{-2 \pi i k / N} O_{k}
$$

write this as

$$
\begin{aligned}
& x_{0}- \\
& x_{1}-F_{4} \\
& x_{2}-\hat{x}_{0} \\
& x_{3}-\hat{x}_{1} \\
& -\widehat{x}_{2} \\
& -\hat{x}_{3}
\end{aligned}
$$

$8 P+D F T$
Same idea

Computational Complexity

- We have $\log _{2}(N)$ levels
- Each level has N/2 butterfly operations
- Each butterfly is

2 complex adds
\& 1 complex ult.
$\Rightarrow(N \log N)$

Remark: Need to reorder the input (due to eventodd splitting at every stage)
binary reg

What about F^{-1} ?
Can show that with unitary DFT

$$
x=\overline{F(\hat{x})} \Rightarrow O(N \log N)
$$ also

