Wavelets \& Multiresolution Analysis
(A gentle introduction)
Recall that with, e.g., the DFT, we were "analyzing" the signal/data by taking inner products with complex expenentials

$$
\begin{aligned}
& \hat{x}(k)=\left\langle x, \varphi^{(k)}\right\rangle \\
& \left\{\in \mathbb{C}^{N} \quad \longrightarrow\left(e^{2 \pi i n k / N}\right)_{n=0}^{N-1}\right.
\end{aligned}
$$

\rightarrow Fourier coff. corresponding to $k^{\text {th }}$ Frequency.
With wavelets $\varphi^{(k)}$ will be replaced by dilations \& translations of a "mother wavelet"

Let's start with Haar wavelets
Itaar Scaling function: (NOT the mother wavelet)

$$
\phi(t)= \begin{cases}1 & 0 \leqslant t<1 \\ 0 & \text { elsewhere }\end{cases}
$$

The subspace $V_{a}:=$ space of functions of the form

$$
f(t)=\sum_{k \in \mathbb{Z}} a_{k} \phi(t-k)^{\prime}, a_{k} \in \mathbb{R}
$$

= piecewise constr. Functions with possible discount. on Z.

The subspace $V_{1}:=$ space of functions of the form

$$
\begin{aligned}
& \text { of the form }=\phi(2(t-k / 2)) \\
& f(t)=\sum_{k \in \mathbb{Z}} a_{k} \widetilde{\phi}(2 t-k), a_{k} \in \mathbb{R}
\end{aligned}
$$

= piecewise const. functions with possible discount. on $\mathbb{Z} / 2$ (half integers)

$$
V_{j}=\operatorname{span}\left\{\phi\left(2^{j} t-k\right), k \in \mathbb{Z}\right\}
$$

Observations:
(1) $\forall(j, k) \in \mathbb{Z}^{2}: f\left(2^{j} t\right) \in V_{j} \Rightarrow f\left(2^{j} t-k\right) \in V_{j}$
(2) $\subset V_{0} \subset V_{1} \subset V_{2} \ldots \subset V_{j-1} \subset V_{j} \subset V_{j+1} \subset \ldots$
$\phi(x)$

$$
\phi(x-1) \stackrel{\square}{\longrightarrow}
$$

(3) $f(t) \in V_{j} \Leftrightarrow f(2 t) \in V_{j+1}$
(4) $\bigcap_{j=-\infty}^{\infty} V_{j}=\{0\}_{0} f(x)=0$
(5) $\bigcup_{j=-\infty}^{\infty} V_{j}=L^{2}(\mathbb{R})$
(6) $\exists \theta \in V_{0}$ s.t. $\{\theta(t-k)\}_{k \in \mathbb{Z}}$ forms
a Rierz kasis for V_{0} for V_{0}
Defin: $\left\{\theta_{k}\right\}_{k \in \mathbb{Z}}$ is a Riesz basis tif it is
the image of an orthonormal basis for V_{0} uncu an invertible linear transformation

Definition: A sequence of closed subspaces $\left\{V_{j}\right\}_{j \in \mathbb{Z}}$ of $L^{2}(\mathbb{R})$ is called a Multiresolution approximation (MRA) ;f the above 6 properties are satisfied.

HW: Prove that the subspaces $\left\{V_{j}\right\}$ generated by Haw are an MRA.
Two more observations:

- $\phi(t)=\frac{1}{\sqrt{2}}(\sqrt{2} \phi(2 t))+\frac{1}{\sqrt{2}}(\sqrt{2} \phi(2 t-1))$ $=\sum_{k}^{2} h_{\phi}(k) \sqrt{2} \phi(2 t-k)$

For general wavelets, this is the "refinement equation"

- $\underbrace{\left\langle\phi_{j, k},\right.} \phi_{j, f^{\prime}}\rangle=\int_{-\infty}^{\infty} \phi\left(2^{j} t-k\right) \phi\left(2^{j} t-k^{\prime}\right)$

$$
=\left\{\begin{array}{ll}
0 & k \neq k^{\prime} \\
1 & k=k^{\prime}
\end{array} \quad 2^{j^{2}} \phi\left(2^{j} t-k\right)\right.
$$

Hoar: $h_{\phi}(0)=\frac{1}{\sqrt{2}}, h_{\phi}(1)=\frac{1}{\sqrt{2}}$
(rest are 0)
Daub 4 Wavelet:

$$
h_{\phi}=\frac{1}{\sqrt{2}}\left(\frac{1+\sqrt{3}}{4}, \frac{3+\sqrt{3}}{4}, \frac{3-\sqrt{3}}{4}, \frac{1-\sqrt{3}}{4}\right)
$$

Back to $V_{0} \subset V_{1} \subset V_{2} \ldots$
Define $W_{0}: V_{0} \oplus W_{0}=V_{1}$

$$
w_{1}: \quad V_{1} \oplus W_{1}=V_{2}
$$

$$
=V_{0} \oplus W_{0}
$$

\uparrow direct sum

Haar: Vo spanned by translates

V, of
$\Rightarrow W_{0}$ spanned by ${ }_{8}$

Define $\psi(t)=\left\{\begin{array}{cl}1 & 0 \leqslant t<1 / 2 \\ -1 & \frac{1}{2} \leqslant t<1\end{array}\right.$
wavelet
Define $\psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right)$

$$
W_{j}=\operatorname{Span}\left\{\psi\left(2^{j} t-k\right), k \in \mathbb{Z}\right\}
$$

Facts

$$
\begin{aligned}
\cdot & L^{2}(\mathbb{R})=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \\
& \left.\quad\{f: S f(x))^{2} d x<\infty\right\}
\end{aligned}
$$

- We can now decompose a function into its components in $V_{0}, W_{0}, W_{1}, \ldots$

$$
\left\{\phi_{0}(-k), \psi_{j, k}\right\}
$$

- The haar system forms an ONB
Proof = Exercise

The Discrete Wavelet Transform

- In practice, these is always a finest scale and a coarsest scale that we care about. (so me are satisfied with approx. in $\left.V_{j}\right\}$
- Assume the finest scale is $2^{0}=1$
- So $f(t) \leadsto\left(x_{0}, x_{1}, x_{2}, \ldots x_{N-1}\right)$
where $x_{k}=\left\langle f, \varphi_{5, k}\right\rangle$
\uparrow finest scale
$x \in \mathbb{R}^{N}$ is now our signal! and we are satisfied with the approx

$$
F \approx \underbrace{\sum_{k=0}^{N-1} x_{k} \phi_{J, k}}_{F_{J}} \quad\left(\begin{array}{c}
\text { Prog of } \\
\text { onto } \left.V_{J}\right)
\end{array}\right.
$$

Henceforth, we will work in this bethe
Define the two operators

$$
\begin{gathered}
H(x)_{k}=(h * x)_{k}=\frac{1}{2} x_{k}-\frac{1}{2} x_{k+1} \\
\left(\cdots, \ldots-\frac{1}{2}, \frac{1}{2}, 0 \ldots\right) \\
\left.k=\frac{\lambda}{2}\right)_{k=1}^{2} \\
L(x)_{k}=(l *)_{k}=\frac{1}{2} x_{k}+\frac{1}{2} x_{k+1} \\
=\begin{array}{l}
\text { scaling" } \\
\left(0, \ldots, \frac{1}{2}, \frac{1}{2}, 0 \cdots\right)
\end{array}
\end{gathered}
$$

Now, keep only the even subscripts on $H(x) \& L(x):$

$$
\left[D_{1} H(x)\right]_{k}=[H(x)]_{2 k}=\frac{1}{2} x_{2 k}-\frac{1}{2} x_{2 k+1}
$$

LDownsampling

$$
[D L(x)]_{x}=[L(x)]_{2 k}=\frac{1}{2} x_{2 k}+\frac{1}{2} x_{2 k+1}
$$

Idea: Recall $F_{J}=\sum_{k} x_{k} \phi_{J, k}$ we can call $\left(x_{0} \ldots, x_{N-1}\right)=: a^{(5)}$ so that $F_{j}=\sum_{k} a_{k}^{(s)} \phi_{j, k}$ and since $V_{J}=V_{J-H} \oplus W_{J-1}$

$$
\text { then } \left.F_{J}=\sum_{k} a_{k}^{J-1)} \phi_{J-1, k}+\sum_{k} b_{k}^{(J-1)} \psi_{J-1, k}\right)
$$

(no normalyation)
where

$$
\begin{aligned}
\phi(x) & =\phi(2 x)+\phi(2 x-1) \\
\psi(x) & =\phi(2 x)-\phi(2 x-1)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \phi\left(2^{J-1} x\right)=\phi\left(2^{J} x\right)+\phi\left(2^{J} x-1\right) \\
& \psi\left(2^{J-1} x\right)=\phi\left(2^{J} x\right)-\phi\left(2^{J} x-1\right) \\
\Rightarrow \ldots \Rightarrow \Rightarrow & \Rightarrow\left\{\begin{array}{l}
a_{k}^{J-1}=\frac{a_{2 k}^{J}+a_{2 k+1}^{J}}{2} \\
b_{k}^{J-1}=\frac{a_{2 k}^{J}-a_{2 k}^{J}}{2}
\end{array}\right.
\end{aligned}
$$

we can proceed in this way to get $f_{J}=\underbrace{f_{0}+\omega_{0}+\omega_{1}+\ldots}_{f_{J-1}}+\omega_{J-1}$ Pictorially, at each level i

So now, if x is of length $N=2^{n}$ we will end up with
b^{J-1} of length $N / 2=2^{n-1}$
$b^{J-2}==2^{n-1}$
b' of length 2
bo of length 1
a^{0} of length 1
These corfficients are the DWT coefficients of x
Remark: Could have stopped at any $a^{k}, k \geqslant 0$

$$
k \leq \overline{0}
$$

(* of "levels" in wavelet transform)

What about Reconstruction?
\Leftrightarrow What about IDWT?
Since the DWT is invertible, we just reed to figure out Low to combine
the coef's to get x back.
Twins out (check!) that

$$
a^{j}=\tilde{L} u a^{j-1}+\tilde{H} u b^{j-1}
$$

$\tau_{\text {upsampling }} \bigcirc$

$$
\begin{aligned}
& U_{z}=\left(\cdots, 0, z_{0}, 0, z_{1}, 0, z_{2}, 0, \ldots\right. \\
& (\tilde{L} z)=\tilde{l} * z \\
& \tau(-0, \ldots, 0,1,1,0, \ldots) \\
& (\tilde{H z})=\tilde{h} * z \\
& \tau\left(\cdots 0, \cdots, \frac{1}{n-1}, 0, \cdots\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & b^{j-1} \\
a^{j-1}-\uparrow-\widetilde{H} & \rightarrow a^{j}
\end{aligned}
$$

Note. Me have basely touched the surface of wavelet theory.
Theorem: Let ϕ be continuous with compact support and suppose

$$
\int \phi(t-k) \phi(t-e) d t=\delta_{k, e} .
$$

Let $V_{j}=\operatorname{span}\left\{\phi\left(z^{j} x-k\right), k \in \mathbb{Z}\right\}$
Then: (1) $\bigcap_{j=-\infty}^{\infty} V_{j}=\{0\}$
(2) If $\int \phi(x) d x=1$

$$
\sum \phi(x)=\sum_{k} p_{k} \phi(2 x-k)
$$

for some finite $\#$ of P's then $U_{j=-\infty} V_{j}=L^{2}(\mathbb{R})$
In particular $\left\{V_{j}\right\}$ forms an

$$
M R A
$$

Prog: See Theron 5.3 In Doges Book.

20 Ware lets \approx outer product ID Wavelets

and so on
Applications (examples)
natural
Compression: Given an image
$X \in \mathbb{R}^{N \times N}$ and itsrvectorized version $x \in \mathbb{R}^{N}$, we can compente its wavelet coeff.
$y=W x, y$ will tend to be sparse ie most entries of y will be ≈ 0.
(JPEG 2000, FBI fingerprint database

Suppose

$$
\begin{aligned}
y= & x+n \quad \underset{\text { noise }}{ } \in \mathbb{R}^{N} \\
& \tau_{\text {signal }}
\end{aligned}
$$

and let,$n \sim N(0, I)$
then $w_{y}=\frac{w_{x}}{b}+\frac{w_{n}}{b}$
Sparse Gaussian
Shrinkage: Kep only the large cages of wy (morally)

