Homework 2 for Math 277A - Fall 2018

Solve 3 of the following 4 problems.
(I) Given $A \in \mathbb{R}^{m \times N}$, prove that every non-negative s-sparse vector $x \in \mathbb{R}^{N}$ is the unique solution to

$$
\min _{z \in \mathbb{R}^{N}}\|z\|_{1} \text { subject to } A x=A z, z \geq 0
$$

if and only if

$$
v_{S^{c}} \geq 0 \Longrightarrow \sum_{j=1}^{N} v_{j}>0
$$

for all $v \in \operatorname{null}(A) \backslash\{0\}$ and all $S \subset[N]$ with $|S| \leq s$.
(II) Recall the definition of the ℓ_{1} coherence function

$$
\mu_{1}(s):=\max _{i \in[N]} \max \left\{\sum_{j \in S}\left|\left\langle a_{i}, a_{j}\right\rangle\right|, S \subset[N],|S|=s, i \notin S\right\}
$$

and the definition of the $\|\cdot\|_{1 \rightarrow 1}$ norm (of a matrix):

$$
\|M\|_{1 \rightarrow 1}:=\max _{z:\|z\|_{1} \leq 1}\|M z\|_{1}
$$

(a) Prove that $\mu_{1}(s)=\max _{S:|S| \leq s+1}\left\|A_{S}{ }^{*} A_{S}-I\right\|_{1 \rightarrow 1}$.
(b) Compare the restricted isometry property constant δ_{s} to $\mu_{1}(s)$ (for the same matrix of course).
(III) Let $A \in \mathbb{R}^{m \times N}$ be a matrix with RIP constant δ_{s}. Prove that if $x \in \mathbb{R}^{N}$,

$$
\|A x\|_{2} \leq\left(1+\delta_{s}\right)^{1 / 2}\left(\|x\|_{2}+\frac{\|x\|_{1}}{\sqrt{s}}\right)
$$

(IV) (Bernoulli Selector) Let $U \in \mathbb{C}^{N \times N}$ be a unitary matrix with BOS constant K and let ε_{j} be random variables that take the value 1 with probability m / N and 0 with probability $1-m / N$. Define the random sampling set

$$
T:=\left\{j \in[N] \quad \mid \quad \varepsilon_{j}=1\right\}
$$

and let A be the random submatrix of U consisting of the rows indexed by T.
(a) Show that $\mathbb{E}|T|=m$,
(b) Find an upper bound for $\mathbb{P}(||T|-m| \geq t)$ for $t>0$.
(c) Let $S \subset[N]$ with $|S|=s$, and let $\widetilde{A}=\sqrt{N / m} A$. Verify that

$$
\widetilde{A}^{*} \widetilde{A}=\frac{N}{m} \sum_{j=1}^{N} \varepsilon_{j} X_{j} X_{j}^{*}
$$

where $\left(X_{j}\right)_{\ell}=\bar{U}_{\ell, j}$ and use the matrix Bernstein inequality to derive an upper bound for

$$
\mathbb{P}\left(\left\|\widetilde{A}_{S}^{*} \widetilde{A}_{S}-I\right\|_{2 \rightarrow 2} \geq t\right)
$$

