6.1 Chebyshev Polynomials

Recall that the error in polynomial interp is given by

\[f(x) - p(x) = \frac{1}{(n+1)!} \sum_{i=0}^{n} f^{(n+1)}(x_i) \prod_{j=0}^{n} (x-x_j) \]

Assume (for convenience) that the interpolation nodes are in \([-1,1]\). If \(x \in [-1,1] \) then \(f(x) \in [-1,1] \), so

\[\max_{x \in [-1,1]} |f(x) - p(x)| \leq \frac{1}{(n+1)!} \max_{x \in [-1,1]} |f^{(n+1)}(x)| \cdot \max_{x \in [-1,1]} \prod_{i=0}^{n} |x-x_i| \]

Idea: choose the nodes \(x_i \) to minimize this term!
Observe: \(\prod_{i=0}^{n} (x-x_i) \) is a monic polynomial with coefficient of \(x^n \) is 1.

Theorem: If \(P \) is a monic polynomial of degree \(n \) then

\[
\|P\|_\infty := \max_{x \in [-1,1]} |P(x)| \geq 2^{-n}
\]

To prove this, we will construct a polynomial that achieves the bound.

Chebyshev Polynomials:

2 Definitions (equivalent)

Recursive Definition:

\[
\begin{cases}
T_0(x) = 1, & T_1(x) = x \\
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), & n \geq 1
\end{cases}
\]
\[T_2(x) = 2x^2 - 1 \]
\[T_3(x) = 4x^3 - 3x \]
\[T_4(x) = 8x^4 - 8x^2 + 1 \quad \ldots \]

Equivalent Definition/Theorem

\[T_n(x) = \cos(n \cos^{-1} x), \quad n \geq 0 \]

Proof of equivalence:

Since \(\cos(A + B) = \cos A \cos B - \sin A \sin B \)

\[\Rightarrow \cos(n+1)\theta = \cos \theta \cos n\theta - \sin \theta \sin n\theta \]
\[\cos(n-1)\theta = \cos \theta \cos n\theta + \sin \theta \sin n\theta \]

\[\Rightarrow \cos(n+1)\theta + \cos(n-1)\theta = 2\cos \theta \cos n\theta \]

Plug in \(\cos^{-1} x \)

Let define \(f_n(x) = \cos(n \cos^{-1} x) \rightarrow f_0(x) = 1, f_1(x) = x \)
\[\& \quad f_{n+1}(x) + f_{n-1}(x) = 2x f_n(x) \]
\[s_{n+1}(x) = 2x \hat{s}_n(x) - s_n(x) \]

So \(T_n = s_n \quad \forall n \)

Recall that we want to get an upper bound on \(|p(x)|, \ x \in [-1, 1] \) when \(p \) is monic.

Theorem: \(\|p\|_\infty = \max_{x \in [-1, 1]} |p(x)| \geq 2^{1-n} \)

Proof: Suppose that \(|p(x)| < 2^{1-n} \quad \forall x \in [-1, 1] \)

We want to get a contradiction.

Let \(q^i = 2^{-n} T_n(x) \) & let \(x_i = \cos\left(\frac{i \pi}{n}\right) \).

Observe that \(q \) is monic, degree \(n \). Also:

\[q(x_i) = 2^{-n} \cos\left(n \cdot \frac{i \pi}{n}\right) = 2^{-n} (-1)^i \]

So \(q(x_i)(-1)^i = 2^{-n} \geq |p(x_i)| = (-1)^i p(x_i) \)

by our supposition

\[(-1)^i (q(x_i) - p(x_i)) > 0 \quad \forall i \in \{0, \ldots, n\} \]

poly, degree \(n-1 \) (highest degree terms cancel)
So, we have a polynomial of degree \(\leq n-1 \) that changes sign \(n+1 \) times in \([-1,1] \) \(\Rightarrow \) it has \(n \)-roots. Can't happen with degree \(\leq n-1 \) \(\Rightarrow \) contradiction \(\Rightarrow |P_n(x)| \geq 2^{1-n} \)

OK, let's get back to the error in poly interp.

\[
\max_{x \in [-1,1]} |f(x) - P_n(x)| \leq \frac{1}{(n+1)!} \max_{x \in [-1,1]} |(n+1)(x)| \max_{x \in [-1,1]} \left| \prod_{i=0}^{n} (x-x_i) \right|
\]

Monic degree \(n \) \(\Rightarrow \geq 2^{-n} \).

So, the best we can do is \(2^{-n} \).

From the proof above, we want \(\frac{n}{i=0} \prod (x-x_i) \)

With nodes \(x_i = \cos \left(\frac{2i+1}{2n+2} \pi \right), \quad i = 0, -1, \ldots, n \)
If x_i are the the roots of T_{n+1}:

$$|f(x) - p(x)| \leq \frac{2^{-n}}{(n+1)!} \max_{|t| \leq 1} |f^{(n+1)}(t)|$$