6.1 Polynomial Interpolation

Goal: Given a set of \(n+1 \) data points \((x_i, y_i)\)

![Diagram showing data points \(x_0, x_1, \ldots, x_n\) and \(y_0, y_1, \ldots, y_n\)]

We seek a polynomial \(P \) with lowest possible degree so that \(P(x_i) = y_i \).

We say that \(P \) interpolates the data.

Theorem: If \(x_0, x_1, \ldots, x_n \) are distinct real numbers, then for arbitrary \(y_0, y_1, \ldots, y_n \), there exists a unique polynomial \(P_n \) of degree \(n \) or less such that

\[
P_n(x_i) = y_i \quad \text{for} \quad i = 0, 1, \ldots, n
\]

Proof: (1) **Existence:**

We'll do it by induction.

- For \(n = 0 \), we can always find \(P_0 \) s.t. \(P_0(x_0) = y_0 \).

- Suppose \(P_{k-1} \) satisfies \(P_{k-1}(x_i) = y_i \) for \(i = 0, 1, \ldots, k-1 \).

Let \(P_k(x) = P_{k-1}(x) + C(x-x_0)(x-x_1)\ldots(x-x_{k-1}) \)

To find \(C \) we just solve \(P_k(x_k) = y_k \).

So \(P_k(x_k) = P_{k-1}(x_k) + C(x_k-x_0)(x_k-x_1)\ldots(x_k-x_{k-1}) \)

\(\Rightarrow \) can solve!

\(y_k \) known because \(P_{k-1} \) is known (all are \(x_i \)'s distinct)
We also note that $P_k(x_i) = P_{k-1}(x_i) = y_i$ for $i = 0, \ldots, k$.

So P_k interpolates the data (x_i, y_i), $i = 0, \ldots, k$.

Uniqueness: Suppose $\exists q_n$ that interpolates the data

then $q_n(x_i) - P_n(x_i) = 0$ for $i = 0, \ldots, n$

$\Rightarrow (q_n - P_n)(x_i) = 0 \rightarrow n + 1$ of these

... of degree $\leq n$ with $n + 1$ zeros $\Rightarrow q_n - P_n = 0$.

Newton form of the interpolating polynomial

From the proof: $P_k(x) = P_{k-1}(x) + C_k(x-x_0) \cdots (x-x_0)$

$\hspace{1cm} = \cdots$

$\hspace{1cm} = C_0 + C_1(x-x_0) + C_2(x-x_0)(x-x_2) + \ldots$

$\hspace{4cm} + C_k(x-x_0) \cdots (x-x_{k-1})$

In short form: $P_k(x) = \sum_{i=0}^{k-1} C_i \frac{x-x_0}{1!} \frac{x-x_1}{2!} \cdots \frac{x-x_i}{i!}$ (interpolating polynomials in Newton form).
Lagrange form of interpolating polynomial

We can write our polynomial as

\[P_n(x) = \sum_{k=0}^{n} y_k \ell_k(x) \]

degree on polynomials depending on the nodes \(x_0, x_1, \ldots, x_n \)

may choose specifically we take \(\ell_k(x_i) = \delta_{ik} \)

\[\ell_k(x) = \delta_{ik} \]

this can be done, e.g., by setting

\[\ell_0(x) = c \prod_{i=1}^{n} \frac{1}{(x-x_i)} \Rightarrow c = \frac{\ell_0(x_0)}{\prod_{i=1}^{n} (x-x_i)} = \frac{1}{\prod_{i=1}^{n} (x_0-x_i)} \\
\]

\[\Rightarrow \ell_0(x) = \prod_{i=1}^{n} \frac{x-x_i}{x_0-x_i} \]

Similarly

\[\ell_0(x) = \prod_{i \neq 0}^{n} \frac{(x-x_i)}{(x_0-x_i)} \]

\[P_n(x) = \sum_{i=0}^{n} y_i \ell_i(x) \]
Example: Given \[x | 5 \quad -7 \quad -6 \quad 0 \]
\[y | 1 \quad -23 \quad -54 \quad 954 \]

Find the cardinal functions and the Lagrange form of the interpolating polynomial

\[l_0(x) = \frac{x - (-7)}{5 - (-7)} \cdot \frac{x - (-6)}{5 - (-6)} \cdot \frac{x - 0}{5 - 0} = \frac{(x+6)(x+7)x}{660} \]

\[l_1(x) = \frac{x - -5}{7 - -7} \cdot \frac{x - -6}{7 - -6} \cdot \frac{x - 0}{7 - 0} = \frac{(x-5)(x+6)x}{-84} \]

\[l_2(x) = \quad \]
\[l_3(x) = \quad \]

\[\Rightarrow P_3(x) = l_0(x) - 23 l_1(x) - 54 l_2(x) - 954 l_3(x) \]

Theorem (error in polynomial interp)

Let \(f \in C^{n+1}([a,b]) \) & \(P \) be a poly of degree \(\leq n \)

that interpolates \(f \) at \(n+1 \) distinct pts \(x_0, x_1, \ldots, x_n \in [a,b] \).

Then \(\forall x \in [a,b], \exists \delta_x \in (a,b) \) s.t.

\[f(x) - P(x) = \frac{1}{(n+1)!} \sum_{i=0}^{n} f^{(i)}(\delta_x) \frac{x^{n-i}(x-x_i)}{i!} \]

Exercise: read the proof! HW: 6.1: 4(a,b), 8, 14, 22
6.2 Divided Differences

Recall:

\[P_n(x) = \sum_{j=0}^{n} c_j \frac{(x-x_j)}{\prod_{k=j}^{n} (x-x_k)} \]

interp. polynomials in Newton form.

If we call

\[g_0(x) = 1 \]
\[g_1(x) = x-x_0 \]
\[g_2(x) = (x-x_0)(x-x_1) \]
\[\vdots \]
\[g_n(x) = \prod_{i=0}^{n-1} (x-x_i) \]

then \[P_n(x) = \sum_{j=0}^{n} c_j g_j(x) \]

Recall, the \(c_j \)'s are what we need to find.

We have \(n+1 \) linear equations:

\[\sum_{i=0}^{n} c_i g_j(x_i) = f(x_i), \quad i = 0, 1, \ldots, n+1 \]
In matrix form:

\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
1 & x_1 - x_0 & 0 & \cdots & 0 \\
1 & x_2 - x_0 & (x_2 - x_0)(x_1 - x_0) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n - x_0 & (x_n - x_0)(x_{n-1} - x_0) & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix}
= \begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
\]

So: \(c_0 \) depends on \(y_0 \), we write \(c_0 = f[x_0] \)

\(c_1 \) depends on \(y_0, y_1 \), we write \(c_1 = f[x_0, x_1] \)

\(\vdots \)

\(c_n \) depends on \(y_0, y_1, \ldots, y_n \), we write \(c_n = f[x_0, x_1, \ldots, x_n] \)

\[\text{old notation} \]

Let's compute a couple of these:

- \(f[x_0] = f(x_0) \) \((= c_0) \)
- \(f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \) \((= c_1) \)

& \(P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) \)

\[\text{Theorem: } f[x_0, x_1, \ldots, x_n] = \frac{f[x_1, \ldots, x_n] - f[x_0, \ldots, x_{n-1}]}{x_n - x_0} \]

Proof: exercise / read it.
So \(f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} \)

This makes it easy to compute the \(f[x_i] \)'s using a divided differences table

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(f[x_0])</th>
<th>(f[x_0, x_1])</th>
<th>(f[x_0, x_1, x_2])</th>
<th>(f[x_0, x_1, x_2, x_3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(f[x_1])</td>
<td>(f[x_1, x_2])</td>
<td>(f[x_1, x_2, x_3])</td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>(f[x_2])</td>
<td>(f[x_2, x_3])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>(f[x_3])</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.g.: Use divided differences to find the Newton interpolating polynomial for

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Sol'n: Step 1 (table)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f[x])</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(\frac{-3-1}{1-3} = 2)</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{2-(-3)}{5-3} = \frac{5}{2})</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{4-2}{6-5} = 2)</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{3\frac{7}{8}-\frac{7}{8}}{6-3} = \frac{7}{40})</td>
</tr>
</tbody>
</table>
Step 2: write the polynomial

\[P(x) = 1 + 2(x-3) - \frac{3}{8}(x-3)(x-1) \]
\[+ \frac{2}{40} (x-3)(x-1)(x-5) \]

Property: If \((z_0, \ldots, z_n)\) is a permutation of \((x_0, \ldots, x_n)\) then

\[f[z_0, \ldots, z_n] = f[x_0, \ldots, x_n] \]

both are the ways of \(x^n\) in the interp. poly

HW 6.2: 4, 8, 9, 24

6.3 Hermite Interpolation

Want to interpolate not only the function, but also its derivatives

Setup: at each \(x_i\) we are given \(f^{(j)}(x_i)\) for \(0 \leq j \leq k_i - 1\)

e.g. Find a polynomial \(P\) with \(P(0) = 0, P'(0) = 1 \& P(1) = 1\)
In general:

\[p^{(i)}(x_i) = c_{ij} \quad (0 \leq j \leq k_i - 1, \ 0 < i \leq n) \]

where \(\sum_{i=0}^{n} k_i = m + 1 \)

So, we have \(m+1 \) conditions \(\Rightarrow \) reasonable to look for an \(m \)th degree polynomial.

Theorem: There is a unique polynomial of degree at most \(m \) satisfying

\[p^{(i)}(x_i) = c_{ij} \quad (0 \leq j \leq k_i - 1, \ 0 < i \leq n) \]

where \(\sum_{i=0}^{n} k_i = m + 1 \)

Example: Hermite interpolation with only one node.

Given: \(p^{(i)}(x_0) \) for \(0 \leq i \leq k \)

\[p(x) = p(x_0) + p'(x_0)(x-x_0) + p''(x_0)(x-x_0)^2/2! \]

\[+ \ldots + p^{(k)}(x_0)(x-x_0)^k/k! \]

Taylor polynomial!
Newton Divided Difference Method

Extensions to some Hermite interpolation

Example: Use extended Newton divided difference to find a polynomial satisfying

\[P(0) = 2, \ P'(0) = 3, \ P(2) = 6, \ P'(2) = 7, \ P''(2) = 8 \]

will come back to it.

Method:

\[
\begin{array}{c|ccccc}
 & x_0 & x_1 & x_2 & x_3 & x_4 \\
\hline
x_0 & f[x_0] & f[x_0,x_0] & f[x_0,x_0,x_1] & f[x_0,x_0,x_1,x_2] & f[x_0,x_0,x_1,x_2,x_3] \\
x_0 & f[x_0] & f[x_0,x_1] & f[x_0,x_1,x_2] & f[x_0,x_1,x_2,x_3] \\
x_1 & f[x_1] & f[x_1,x_2] & f[x_1,x_1,x_3] \\
x_2 & f[x_2] \\
\end{array}
\]

But what is \(f[x_0,x_0] \)? \(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \)

\[f[x_0,x_0,x_0] = ? \]

Apply Theorem 4: \(\exists \ \delta = x_0 : f[x_0,x_0,x_0] = \frac{f'(x_0)}{2} \)
Similarly \[f[x_0, \ldots, x_0] = \frac{f^{(k)}(x_0)}{k!} \] for all time.

OK back to the example.

\[P(1) = 2, \quad P'(1) = 3, \quad P(2) = 6, \quad P'(2) = 7, \quad P''(2) = 8 \]

\[
\begin{array}{c|cccc}
1 & 2 & 3 & y_{3-1} & 2 \\
1 & 2 & 5 & \frac{y_{2-1}}{2} & -1 \\
2 & 6 & 7 & \frac{8}{2!} & \\
2 & 6 & & & \\
\end{array}
\]

Now we use the top row to write \(p(x) \)

\[p(x) = 2 + 3(x-1) + 1(x-1)^2 + 2(x-1)^2(x-2) - (x-1)^3(x-2) \]

Check: \[p(1) = 2 \]
\[p'(1) = 3 \]
\[p(2) = 2 + 3(2-1) + 1(2-1)^2 + 0 = 6 \]
\[p''(2) = 3 + 2(2-1) + 2(2-1)^2 = 7 \]
\[p''(2) = 2 + \ldots = 8 \]

HW 6.3: 1, 3