Back to GD:

We've seen that

\[
\|x^{(0)} - x^*\| \leq R \quad \Rightarrow \quad f\left(\frac{1}{t} \sum_{k=0}^{t-1} x^{(k)}\right) - f(x^*) \leq \frac{RL}{\sqrt{t}}
\]

and converge when \(\mu = \frac{R}{L\sqrt{t}} \)

So, for an error \(\leq \varepsilon \), we require \(\frac{\sqrt{t}}{\varepsilon} \) iterations. Can we do better if we assume more about \(f \)?

Def’n We say \(f: \mathbb{R}^n \to \mathbb{R} \) is \(L \)-smooth if its gradient is \(L \)-Lipschitz, i.e. if

\[
\|\nabla f(x) - \nabla f(y)\| \leq L\|x-y\|
\]

Theorem If \(f: \mathbb{R}^n \to \mathbb{R} \) is \(L \)-smooth and converges if \(\mu L \leq \frac{1}{t} \)

\[
x^{(t+1)} = x^{(t)} - \mu \nabla f(x^{(t)})
\]

satisfy

\[
f(x^{(t)}) - f(x^*) \leq \frac{1}{2\mu} \|x^{(0)} - x^*\|
\]
* We won’t prove this theorem, but a key element in its proof is the fact that for L-smooth convex functions, we have that
 \[f(y) \leq f(x) + \nabla f(x)^T(y-x) + \frac{L}{2} \|y-x\|^2 \]

 * With L-smoothness, need $\frac{1}{\epsilon}$ iterations to get ϵ error.

* Can modify GD to get projected GD for L-smooth function with same convergence rate when solving
 \[\min_{x \in \mathbb{R}} f(x) \quad \text{(with \mathbb{R}^n convex)} \]

Picking μ in Practice

* The convergence theorems we’ve seen so far require knowing the Lipschitz constant or smoothness constant associated with $f(x)$ (in order to set μ).
This is not always possible in practice.

Idea: Use the "best" $\mu(t)$ at every iteration

$$x(t+1) = x(t) - \mu(t) \nabla f(x(t))$$

Pick $\mu(t)$ to minimize

$$\min_{\mu(t)} f(x(t) - \mu(t) \nabla f(x(t)))$$

The variable we're optimizing here is $\mu(t)$.

Often, solving this exactly is hard so we settle for an approximate solution.

Possible Solutions: set μ using a Backtracking Line Search at every iteration.
Idea: For any descent direction \(\mathbf{p} \)

\[
 f(x) - \nabla f(x)^T \mathbf{p} \leq f(x - \mathbf{p}) \leq f(x) - \mathbf{p}^T \nabla^2 f(x) \mathbf{p}
\]

\(\mathbf{p} \) is a descent dir.

So there is a small constant \(\delta > 0 \), that make this ineq. true.

Fake \(\mathbf{p} = \mu \nabla f(x) \) (as in GD)

and plug it into \((*)\).

So we expect that if \(\mu \) is small enough

\[
 f(x - \mu \nabla f(x)) \leq f(x) - \delta \mu \| \nabla f(x) \|^2
\]

* Idea: Fix \(\delta \) (say 0.5)

Start with (e.g.) \(\mu = 1 \)

decrease \(\mu \) iteratively until

\[
 f(x(t+1)) = f(x(t) - \mu \nabla f(x(t)))
\]

is smaller than \(f(x^{(t)}) - \delta \mu \| \nabla f(x(t)) \|^2 \)

E.g.: \(\mu = 1 \rightarrow \mu = 0.8 \rightarrow \mu = 0.8^2 \cdots \)
"Example by picture"

\[f(x) \]

Gradient direction

1. \[x(t) - 0.8 \nabla f(x(t)) \]
2. \[x(t) = 0.8 \nabla f(x(t)) \]
3. \[\mu = 0.1 \mu^2 \]

Now, we're good

So we try \(\mu = 0.1 \) (still too big)

\[m = 1 \cdot \frac{f(x(t) - \mu \nabla f(x(t)))}{f(x(t)) - \mu \nabla f(x(t))} \]

is too big
(bigger than \(\frac{1}{\| \nabla f(x(t)) \|^2} \))
More Precisely:

Backtracking Line Search

Pick $\beta < 1$, $\delta < 1$

At each GD step t:

1. Set $v = -\nabla f(x^{(t)})$
2. Set $\mu = 1$
3. If

 \[f(x^{(t)} - \mu \nabla f(x^{(t)})) \leq f(x^{(t)}) - \mu \gamma \|\nabla f(x^{(t)})\|^2 \]

 Then

 keep μ

4. Else

 Set $\mu \leftarrow \beta \mu$ & Repeat (3)

Remark: The condition

\[f(x^{(t)} - \mu \nabla f(x^{(t)})) \leq f(x^{(t)}) - \mu \gamma \|\nabla f(x^{(t)})\|^2 \]

is known as the **Armijo Condition** and guarantees that the function value decreases by some non-zero amount.
Example: Consider the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ with

$$f(x_1, x_2) = (x_1 - 1)^4 + (x_1 + x_2 - 1)^2$$

(Which has minimizer $(-1, 0)$)

$$\nabla f = (4(x_1 - 1)^3 + 2(x_1 + x_2 - 1), 2x_1 + 2x_2 - 2)$$

Suppose $x^{(0)} = (0, 0)$

$$x^{(1)} = x^{(0)} - \mu \nabla f(x^{(0)}) = (0, 0) - \mu (-6, -2)$$

Want to pick μ to minimize $f(0, 0) - \mu (-6, -2)$

$$f(0, 0) - \mu (-6, -2) = f(6\mu, 2\mu) = (6\mu - 1)^4 + (8\mu - 1)^2$$

This is a non-linear eq'n in μ that may be hard to minimize.

Then let's run Backtracking Line Search with $\gamma = 0.5, \beta = 0.8$

$$x^{(1)} = x^{(0)} - \mu \nabla f(x^{(0)})$$

$$= (0, 0) - \mu (-6, -2)$$
So we try: \(m = 1 \);

\[
f(x^{(0)}) = 674 > f(x^{(0)}) - m \| \nabla f(x^{(0)}) \|^2 - 18 \]

\(x^{(0)} - m \nabla f(x^{(0)}) \)

\[
\frac{f(x^{(0)})}{m} = 0.8 \quad \Rightarrow \quad f(x^{(0)}) = 237.6736 > -14 \]

\[
f(x^{(0)}) - m \| \nabla f(x^{(0)}) \|^2 \]

\(m = 0.8^2 \) (same issue)

Finally, \(m = 0.8 \) gives

\[
f(x^{(1)}) = 0.1530 \lesssim f(x^{(0)}) - 0.5 \times 0.8 \| \nabla f(x^{(0)}) \|^2
\]

So we choose \(m = 0.8 \) and set \(x^{(1)} = (0, 0) - 0.8 \nabla f(0, 0) = (0.5154, 0.1718) \)

Then we repeat the process for \(x^{(2)} \); \(x^{(3)} \); \(x^{(4)} \); \(x^{(5)} \); \(x^{(50)} \)

\[
\rightarrow (0.970, 0.0211)
\]
Fact/Theorem: For an L-smooth convex function, with $\mu^{(t)}$ set by backtracking line search as above, we have

$$f(x^{(t)}) - f(x^*) \leq \frac{1}{2L \min_{s=1, \ldots, t} \mu^{(s)}}$$

and

$$\min_{s=1, \ldots, t} \mu^{(s)} \geq \min \left(\frac{1}{L} \beta^2 \right)$$

so we get

$$f(x^{(t)}) - f(x^*) \leq \frac{L}{2L \beta}$$

* More can be said when we assume more about the function (e.g. strong convexity).

* More can be said about line search methods.

* We may return to these topics later if time permits.
Newton's Method

So far, we have used GD, which was derived from the 1st order Taylor approximation:

\[f(x) \approx f(x^{(t)}) + \nabla f(x^{(t)})^T (x - x^{(t)}) \]

We want this as small as possible.

\[\Rightarrow \text{pick } x^{(t+1)} = x^{(t)} - \mu \| \nabla f(x^{(t)}) \|^2 \]

If, instead, we use a 2nd order Taylor approximation, we obtain Newton's method:

\[f(x) \approx f(x^{(t)}) + \nabla f(x^{(t)})^T (x - x^{(t)}) + \frac{1}{2} (x - x^{(t)})^T \nabla^2 f(x^{(t)}) (x - x^{(t)}) \]

At a minimum, we expect that \(\nabla f = 0 \) (because the right hand side is convex) so taking \(\nabla \) on both sides.
\[\nabla f(x) \approx 0 + \nabla f(x^{(t)}) + \nabla^2 f(x^{(t)})(x - x^{(t)}) \]
\[\Rightarrow x - x^{(t)} \approx -[\nabla^2 f(x^{(t)})]^{-1} \nabla f(x^{(t)}) \]

at the minimizer, so we set
\[x^{(t+1)} = x^{(t)} - [\nabla^2 f(x^{(t)})]^{-1} \nabla f(x^{(t)}) \]

Example: Let \(f : \mathbb{R}^+ \to \mathbb{R} \) be given by \(f(x) = x - \ln(x) \)

Then \(\nabla f(x) = f'(x) = 1 - \frac{1}{x} \)
\[\nabla^2 f(x) = f''(x) = \frac{1}{x^2} \]

Newton's method starting at \(x^{(0)} = 0.5 \) generates the iterates

\[x^{(t+1)} = x^{(t)} - [f''(x^{(t)})]^{-1} f'(x^{(t)}) \]
\[= x^{(t)} - [x^{(t)}]^2 (1 - \frac{1}{x^{(t)}}) \]
\[= x^{(t)} - [x^{(t)}]^2 + x^{(t)} = 2x^{(t)} - (x^{(t)})^2 \]
\[\Rightarrow x^{(1)} = 2x^{(0)} - [x^{(0)}]^2 = 1 - 0.25 = 0.75 \]
\[x^{(2)} = \ldots = 0.9375 \]
\[x^{(3)} = \ldots = 0.9961 \]
\[x^{(4)} = \ldots = 0.9998 \]

(Note that the optimum is \(x^* = I \))

If this seems fast, it is not a coincidence.

Definition: for a matrix \(M \):

\[\|M\| = \max_{x \neq 0} \frac{\|Mx\|}{\|x\|} \rightarrow \text{length of } Mx \]

\[\|M\| \text{ measures how much the matrix } M \text{ can "stretch" vectors} \]

(Consequence of the definition:

\[\forall z \in \mathbb{R}^n : \|Mz\| \leq \|M\| \|z\| \]

\[\text{length of } Mz \leq \text{length of } z \] (norm of \(M \))
Theorem: Let f be twice continuously differentiable & suppose that x^* has $\nabla f(x^*) = 0$.
Suppose further that

\[
\| (\nabla^2 f(x^*))^{-1} \| \leq \frac{1}{h} \quad \text{for some } h > 0 \\
\| \nabla^2 f(x) - \nabla^2 f(x^*) \| \leq \frac{1}{h} \| x - x^* \|
\]

for all x.

Then, if $\| x^{(0)} - x^* \| \leq \frac{2h}{3L}$ \(\uparrow \) starting point,

\[x^{(t+1)} = x^{(t)} - [\nabla^2 f(x^{(t)})]^{-1} \nabla f(x^{(t)}) \]
\(\uparrow \) next point.

we have:

\[
\begin{cases}
\| x^{(t+1)} - x^* \| \leq \frac{2h}{3L} \quad \forall t \\
\| x^{(t+1)} - x^* \| \leq \frac{3L}{2h} \| x^{(t)} - x^* \|^2 \\
\| x^{(t+1)} - x^* \| \leq \frac{3L}{2h} \| x^{(t)} - x^* \|^2
\end{cases}
\]
If we start close enough to a local minimum, and the function is nice, we converge quickly to the minimum.

Example

Want to minimize
\[f(x) = x_1^4 + 2x_1^2x_2^2 + x_2^4 \]
using Newton's method

\[\Rightarrow \text{ need } \nabla f(x) \text{ & } \nabla^2 f(x) \]

\[\nabla f(x) = \begin{pmatrix} 4x_1^3 + 4x_1x_2^2 \\ 4x_1^2x_2 + 4x_2^3 \end{pmatrix} \]

\[\nabla^2 f(x) = \begin{pmatrix} 12x_1^2 + 4x_2^2 & 8x_1x_2 \\ 8x_1x_2 & 4x_1^2 + 12x_2^2 \end{pmatrix} \]

Suppose we start at \(x^0 = (1,1) \)
Then \[x^{(1)} = x^{(0)} - \left[D^2 f(x^{(0)}) \right]^{-1} Df(x^{(0)}) \]

\[= \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \left[\begin{pmatrix} 16 & 8 \\ 8 & 16 \end{pmatrix} \right]^{-1} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \]

\[= \begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix} \]

Continuing this way,

\[x^{(t)} = \begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix}^t \xrightarrow{t \to \infty} 0 \]

exponentially fast in \(t \).

Example

\[f(x) = \frac{x^4}{4} - x^2 + 2x + 1 \]

Start at \(x^{(0)} = 0 \)

\[Df(x) = x^3 - 2x + 2 \quad D^2 f(x) = 3x^2 - 2 \]
\[x^{(0)} = x^{(1)} = x^{(0)} - \left(\nabla^2 f(x^{(0)}) \right)^{-1} \nabla f(x^{(0)}) \]
\[= 0 - (-2)^{-1} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \]
\[= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

\[x^{(2)} = x^{(1)} - \left(\nabla^2 f(x^{(1)}) \right)^{-1} \nabla f(x^{(1)}) \]
\[= \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]
\[= 0 = x^{(0)} \]
back to \(x^{(0)} \) ! So we entered a cycle!

So, Newton’s method need not always converge.

Why does this not contradict the theorem?
Some Remarks on Newton’s Method

1) We can modify Newton’s Method to include a step size $0 < \mu < 1$

$$x(t+1) = x(t) - \mu \left[\nabla^2 f(x(t)) \right]^{-1} \nabla f(x(t))$$

- can choose fixed
- can use backtracking line search

2) Finding the inverse of the Hessian can be very expensive if n is large.

Instead, notice that

$$x(t+1) = x(t) - \left[\nabla^2 f(x(t)) \right]^{-1} \nabla f(x(t))$$

$$= \left[\nabla^2 f(x(t)) \right] \left[x(t+1) - x(t) \right] = - \nabla f(x(t))$$

known \uparrow \quad \text{known} \quad \text{known} \quad \text{known}

solve for this
So we can use linear algebra techniques to solve for $x^{(t+1)}$ from this system.

(3) Newton's method, when it converges, tends to do so much faster than GD. (compare the convergence theorems).

Quasi-Newton Methods

(very briefly)

Recall: GD has the interpretation

$$f(x) \approx f(x^{(t)}) + \nabla f(x^{(t)})^T(x - x^{(t)}) + \frac{\alpha}{2} \|x - x^{(t)}\|^2$$

minimizing the right hand side gives

$$x^{(t+1)} = x^{(t)} - \frac{1}{\alpha} \nabla f(x^{(t)})$$
Meanwhile **Newton's Method**

\[f(x) = f(x^{(t)}) + \nabla f(x^{(t)})^T (x - x^{(t)}) + \frac{1}{2} (x - x^{(t)})^T \nabla^2 f(x^{(t)})(x - x^{(t)}) \]

minimizing the right hand side gives \[x^{(t+1)} = x^{(t)} - \left[\nabla^2 f(x^{(t)}) \right]^{-1} \nabla f(x^{(t)}) \]

So, we can think of GD as approximating the Hessian with \[\frac{1}{\beta} I \]

Identity matrix.

Quasi-Newton methods approximate the Hessian with some other matrix \(B_t \) which changes from iteration to iteration, so that
\[x^{(t+1)} = x^{(t)} - \mu^{(t)} B_t^{-1} \nabla f(x^{(t)}) \]

There are several such methods (with different choices for \(B_t \)). We won’t cover them here, but examples are:

- BFGS method
- Broyden