Classification Problems, Support Vector Machines & Duality

Goal: Use Lagrangian Duality to help us understand an applied problem.

Classification: Somebody gives you accurately classified data:

\[(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \]

\(x \in \mathbb{R}^d \) e.g. \(x \in \{+1, -1\} \)

So \(x_i \) are the data points & \(y_i \) are their "labels".

Objective: Given \(\{(x_i, y_i)\}_{i=1}^N \) data pts

Learn a function \(f: \mathbb{R}^d \rightarrow \mathbb{R} \)

so that when we get a new point \(x \), \(f(x) > 0 \) when \(y = +1 \)

(with true label \(y \)) & \(f(x) < 0 \) when \(y = -1 \)
Linear Discrimination

To make this problem easier, we assume that f is an affine function:

$$f(x) = a^T x + b$$

so we want

$$\begin{cases} a^T x_i + b > 0 \text{ when } y_i > 0 \\ a^T x_i + b < 0 \text{ when } y_i < 0 \end{cases}$$

So we want a hyperplane that separates the classes.
It will be convenient to work with (**) instead of (*) , where
\[
\begin{cases}
 a^T x_i + b > +1 & \text{when } y_i > 0 \\
 a^T x_i + b < -1 & \text{when } y_i < 0
\end{cases}
\]

Support Vector Machines

Playing with (**) further, we see it is equivalent to
\[
\begin{cases}
 a^T x_i + b > +1 & \text{when } y_i > 0 \\
 a^T (-x_i) + (-b) > +1 & \text{when } y_i < 0
\end{cases}
\]

Let \(I := \{ i : y_i = +1 \} \)

\(J := \{ i : y_i = -1 \} \)

all things with label +1

all things with label -1.
Proposition: (**) is feasible if and only if the convex hulls of
\[\mathcal{A} := \{ x_i : i \in I \} \] do not intersect,
\[\mathcal{B} := \{ x_j : j \in J \} \]

Robust Separation?

We assume that the convex hulls in proposition above indeed don't intersect so there are choices \(a \in \mathbb{R}^d \) & \(b \in \mathbb{R} \) that make (**) true.

Our goal is to find the "best" choice of \(a \) & \(b \).

Fact: The set \(\mathcal{M} := \{ x \in \mathbb{R}^d : -1 \leq ax + b \leq 1 \} \) is called the classification margin & contains no data pts.
The width of M is the distance between the hyperplanes

$\{ x = a_1^T x + b = 1/2 \} \land \{ x = a_1^T x + b = -1/2 \}$

Fact 2: Width of $M = \frac{2}{\| a_1 \|}$

Why? (Can you prove it?)
So, one reasonable thing to do is to choose a and b to maximize the width of M (so that the classes are maximally separated).

We want to solve:

$$\max_{a \in \mathbb{R}^d} \frac{2}{\|a\|} \text{ s.t. } \begin{cases} \bar{a}x_i + b_i \geq 1 \\ \forall i \in I \\ a_i^T x_i + b_i \leq -1 \\ \forall i \in J \end{cases}$$

$$\min_{a \in \mathbb{R}^d} \frac{\|a\|^2}{4} \text{ s.t. } \begin{cases} \bar{a}x_i + b_i \geq 1 \\ \forall i \in I \\ a_i^T x_i + b_i \leq -1 \\ \forall i \in J \end{cases}$$
The Dual of (P)

Recall that to compute the dual opt. problem, we must

1. Compute the Lagrangian L

 (Here $L(a, b, \lambda, \mu)$, more on this in a bit)

2. Compute the dual function

 $F(\lambda, \mu) = \min_{(a, b)} L(a, b, \lambda, \mu)$

3. Write the dual opt. prob.

 $\max F(\lambda, \mu)$ s.t. $\lambda \geq 0$

 (λ, μ) $\mu \geq 0$

Let’s start with (1)
\[L(a,b,\lambda,\mu) = \frac{1}{4} \| a \|^2 + \sum_{i \in I} \lambda_i (1 - a^T x_i - b) \]
\[+ \sum_{j \in J} \mu_j (b + a^T x_i - 1) \]

where \(\lambda, \mu \) are the dual variables.

\(\lambda \in \mathbb{R}^{|I|}, \quad \mu \in \mathbb{R}^{|J|} \)

(Here \(|I| \) = \# of elements in \(I \))

and \(\lambda \geq 0, \mu \geq 0 \).

Rearranging the expression for \(L \), we get:

\[L(a,b,\lambda,\mu) = \frac{1}{4} \| a \|^2 + \langle a, \sum_{j \in J} \mu_j x_j - \sum_{i \in I} \lambda_i x_i \rangle \]
\[+ \langle b, \sum_{j \in J} \mu_j - \sum_{i \in I} \lambda_i \rangle + \sum_{i \in I} \lambda_i + \sum_{j \in J} \mu_j \]

Let's now calculate \(F(\lambda, \mu) \):

\[F(\lambda, \mu) = \min_{a, b} L(a, b, \lambda, \mu) \]
Since \mathcal{L} is convex in a & b, taking derivatives with respect to a, b and setting $\nabla_a \mathcal{L} = 0$, $\nabla_b \mathcal{L} = 0$, we get that at the minimizer

\[
\begin{align*}
\begin{cases}
\frac{\partial}{\partial a} + \sum_{j \in J} \mu_j x_j - \sum_{i \in I} \lambda_i x_i = 0 &\text{--- (t)} \\
\sum_{j \in J} \mu_j - \sum_{i \in I} \lambda_i = 0 &\text{--- (tt)}
\end{cases}
\end{align*}
\]

Plugging (t) & (tt) into the exp. for $\mathcal{L}(a, b, \lambda, \mu)$ gives

\[
F(\lambda, \mu) = - \| \sum_{i \in I} \lambda_i x_i - \sum_{j \in J} \mu_j x_j \|^2
\]

\[
+ \sum_{i \in I} \lambda_i + \sum_{j \in J} \mu_j
\]

[Should be equal by (tt)]

So now we can write the dual opt. problem
\[
\max - \frac{1}{2} \sum_{i \in I} \lambda_i x_i - \sum_{j \in J} m_j x_j + \sum_{i \in I} \lambda_i + \sum_{j \in J} m_j
\]
subject to \(\sum_{i \in I} \lambda_i = \sum_{j \in J} m_j\) (from (++)
\[
\begin{cases}
\lambda \geq 0 \\
M \geq 0
\end{cases}
\]

Let's play with this by setting \(\sum_{i \in I} \lambda_i = s\) (which is \(\geq 0\) bec \(\lambda_i \geq 0\)) and dividing by a

\[
\max - \frac{1}{2} \sum_{i \in I} \lambda_i' x_i - \sum_{j \in J} m'_j x_j + 2s
\]
subject to \(\sum_{i \in I} \lambda_i' = \sum_{j \in J} m'_j = 1\)
\[
\begin{cases}
\lambda' \geq 0 \\
S \geq 0 \\
M \geq 0
\end{cases}
\]
Now, notice that the maximum in s is obtained when

$$s^* = \frac{2}{\| \sum_{i \in I} \lambda_i x_i - \sum_{j \in J} m_j x_j \|^2}$$

so that the dual now becomes

$$\max_{\mathbf{\lambda} \geq 0} \frac{1}{\| \sum_{i \in I} \lambda_i x_i - \sum_{j \in J} m_j x_j \|^2}$$

subject to

$$\begin{cases} \sum_{i \in I} \lambda_i = \sum_{j \in J} m_j = 1 \\ \lambda_i \geq 0, \quad m_j \geq 0 \end{cases}$$

(D)

Ok, but do we have strong duality?
Let's check Slater's conditions

- \(f \) is convex \(\forall (11a11^2 \text{ is cvx}) \)
- \(g_i \) are convex \(\forall (\langle a, x_i \rangle + b - 1 \text{ are convex}) \)
- \(h_j \) are linear \(\forall (\text{there are no } h_j \text{ here}) \)
- \(\exists \overline{x}: g_i(\overline{x}) < 0 \ \forall i \)

\[\exists \overline{x}: \text{all inequalities are strict} \]

but we assumed the convex hulls \(\mathcal{H} \) the points in \(I \) & \(J \) don't intersect, so we're good here too. (why?)

\[\Rightarrow \max_{a, b} \frac{2}{11a11} = \min_{\lambda, \mu} \| \sum_{i \in I} \lambda_i x_i - \sum_{j \in J} \mu_j x_j \| \]

s.t. \(\langle a, x_i \rangle + b \geq 1 \ \forall i \in I \)

\(\langle a, x_j \rangle + b \leq 1 \ \forall j \in J \)

maximizes the width of the classification margin

\[\text{minimize } \| \sum_{i \in I} \lambda_i x_i - \sum_{j \in J} \mu_j x_j \| \]

s.t. \(\sum_{i \in I} \lambda_i = \sum_{j \in J} \mu_j = 1 \)

\(\lambda \geq 0, \mu \geq 0 \)

What does this mean?
Note that $\sum_{i \in I} \lambda_i x_i$ where $\sum_{i \in I} \lambda_i = 1$ is a pt. in the convex hull of the set A, and $\sum_{j \in J} \mu_j x_i$ where $\sum_{j \in J} \mu_j = 1$ is a pt. in the convex hull of the set B.

So the dual problem is finding the two pts in the convex hulls of A & B respectively that are closest to each other!

Strong duality \implies this is the same as the margin of the best hyperplane.