Kantorovich Duality & Optimal Transport Problems on Magnetic Graphs

Sawyer Jack Robertson

The University of Oklahoma

January 17, 2019

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □

October 3, 2019

1/14

Objectives

- Explain the concepts of magnetic graphs and their 'lifts'
- State a classical Kantorovich duality result and introduce a new formulation for magnetic graphs
- Characterize the extreme points in Lipschitz-type function spaces for both classical and magnetic graphs
- Present a 'compression equation'

イロト イロト イヨト イヨト

Magnetic Graphs

- Throughout, G = (V(G), E(G)) is a simple and connected combinatorial (undirected) graph.
- One oriented edge set of a graph G is given by

 $E^{\rm or}(G) := \{(u,v), (v,u) : u, v \in V(G), u \sim v\}.$

A signature on a graph is a map

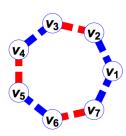
$$\sigma: E^{\mathrm{or}}(G) \to \{z \in \mathbb{C} : |z| = 1\} : (u, v) \mapsto \sigma_{uv},$$

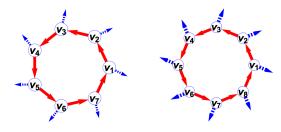
satisfying the property $\sigma_{vu} = \overline{\sigma_{uv}}$.

- A pair (G, σ) is called a **magnetic graph**.
- A magnetic graph (G, σ) is **balanced** if the product of the signature values along any directed cycle is 1; otherwise, a magnetic graph is called **unbalanced**.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

Some examples...





(a) 7-vertex cycle graph, with real-valued signature. The edges with positive signature are in blue, those with negative signature are in red.

(b) 7-vertex cycle graph with complex-valued signature. All edges have signature $e^{\frac{i\pi}{2}}$, illustrated blue arrow from the red edges.

(c) 8-vertex cycle graph with complex-valued signature. All edges have signature $e^{\frac{i\pi}{2}}$, illustrated by the angular offset of the by the angular offset of the blue arrow from the red edges.

Figure: Three magnetic cycle graphs. Examples (a) and (b) are unbalanced, and (c) is balanced. ヘロト ヘアト ヘビト ヘビ

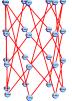
Magnetic lift graphs

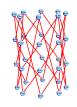
- If (G, σ) is a magnetic graph and σ takes values in a group of the *p*-th roots of unity \mathbf{S}_p^1 , we may construct a **magnetic lift graph** \widehat{G} via the vertex set $V(\widehat{G}) := V(G) \times \mathbf{S}_p^1$, with two vertices $(u, \omega_1), (v, \omega_2)$ adjacent if and only if $u \sim v$ and $\omega_2 = \omega_1 \sigma_{uv}$.
- Balanced magnetic graphs always have disconnected lift graphs; unbalanced magnetic graphs usually have connected lift graphs.

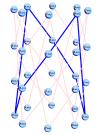
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

More examples...

(a) Lift of the graph in (a) above.
The lower and upper levels (b) Lift of graph (b) correspond to the above; notice the 4 signature values of 'levels' and +1 and -1 resp. connectedness







(c) Lift of graph (c) above, notice the disconnectedness of the graph.

(d) Lift of graph (c) above with one cycle highlighted.

Figure: Various lifts from the preceding magnetic graphs.

Classical OT on Graphs

- Let G = (V(G), E(G)) be a simple connected graph equipped with the shortest-path metric d.
- Suppose one has two mass (probability) distributions defined on the vertices of a graph, say v, µ : V(G) → ℝ, then we may consider the question of how one can transport the initial mass distribution µ to the terminal mass distribution v.
- This is formalized with the notion of a **transport plan** $\gamma : V \times V \rightarrow \mathbb{R}$, a non-negative function which quantifies the amount of mass moved from vertex *u* to vertex *v*. $\Gamma(\mu, \nu)$ is the set of all admissible μ, ν -transport plans.
- Then the transport cost of μ and ν with respect to the metric d (Or the 1-Wasserstein metric) may be formulated:

$$W_1(\mu,\nu) = \inf_{\gamma \in \Gamma(\mu,\nu)} \sum_{u \in V(G)} \sum_{v \in V(G)} \gamma(u,v) d(u,v).$$
(1)

7/14

October 3, 2019

Optimal transport on graphs is the study of this quantity, others like it, and the transport plans which attain them.

Classical Kantorovich Duality (1)

• Let $u_0 \in V(G)$ be a fixed 'base vertex.' We define the **Lipschitz space** and its norm:

$$\operatorname{Lip}_{0}(G) := \{ f : V \to \mathbb{R} \mid f(u_{0}) = 0 \}, \quad ||f||_{\operatorname{Lip}} = \max_{u \sim v} |f(u) - f(v)|$$

for each $f \in \text{Lip}_0(G)$.

Separately, we define for each pair of adjacent vertices *u* ~ *v* the combinatorial atom *m_{uv}* : *V*(*G*) → ℝ defined by

$$m_{uv}(x):=\mathbb{I}_{\{u\}}-\mathbb{I}_{\{v\}}.$$

We define the Arens-Eells space to be

$$\mathcal{A}(G) := \operatorname{span}_{\mathbb{R}}\{m_{uv}\}_{u \sim v}$$

equipped with the norm

$$||m||_{\mathcal{E}} := \inf \left\{ \sum_{i} |a_i| \mid m = \sum_{i} a_i m_{u_i v_i} \right\}.$$

October 3, 2019 8 / 14

Classical Kantorovich Duality (2)

Theorem (Kantorovich duality, 1940s [4])

The spaces $\mathcal{A}(G)^*$ *and* $Lip_0(G)$ *are isometrically isomorphic. It holds*

$$W_{1}(\mu, \nu) = \sup \left\{ \left| \sum_{u \in V(G)} f(u)(\mu(u) - \nu(u)) \right| \mid f \in Lip_{0}(G), ||f||_{Lip} \le 1 \right\}$$
$$= ||\mu - \nu||_{\mathcal{E}}$$

- Note that the transport cost $W_1(\mu, \nu)$ we are interested in is now formulated as the norm $\|\mu \nu\|_{\mathcal{E}}$.
- Purther note that the sup expression above may be restricted to those *f* ∈ Lip₀(*G*) which are convex extreme points of the unit ball in the space Lip₀(*G*).

イロト イポト イヨト イヨト

Magnetic Kantorovich Duality

• The σ -**Lipschitz** space $\text{Lip}^{\sigma}(G)$ and its norm are defined by

$$\operatorname{Lip}^{\sigma}(G) := \{ f : V(G) \to \mathbb{C} \}, \qquad ||f||_{\operatorname{Lip}^{\sigma}} = \max_{u \sim v} |f(u) - \sigma_{uv}f(v)|.$$

Similarly, we may define a magnetic atom for every pair of adjacent vertices *u*, *v*, and the *σ*-Arens-Eells space to be

$$m_{uv}^{\sigma}(x) := \mathbb{I}_{\{u\}} - \sigma_{uv} \mathbb{I}_{\{v\}}, \quad \mathcal{A}^{\sigma}(G) := \operatorname{span}_{\mathbb{C}} \{m_{uv}^{\sigma}\}_{u \sim v}$$

equipped with the norm

$$||m||_{\mathcal{A}^{\sigma}} := \inf \Big\{ \sum_i |a_i| \mid m = \sum_i a_i m_{u_i v_i}^{\sigma} \Big\}.$$

Theorem (Kantorovich duality, magnetic version, SR 2018)

For an unbalanced, simple magnetic graph (G, σ) the spaces $\mathcal{A}^{\sigma}(X)$ and $Lip^{\sigma}(X)^*$ are isometrically isomorphic.

Classical Extreme Points

• If $f \in \text{Lip}_0(G)$ with $||f||_{\text{Lip}} \le 1$, then f is called an **extreme point** of the unit ball in $\text{Lip}_0(G)$ (denoted B_{Lip}) provided that for any $g \in \text{Lip}_0(G)$, if it holds that

$$\left\{f + tg \mid t \in [-1, 1]\right\} \subset B_{\operatorname{Lip}},$$

then $g \equiv 0$.

So If $\{u, v\} \in E(G)$, we say that $\{u, v\}$ is **satisfied** by *f* provided |f(u) - f(v)| = 1.

Theorem (Classical extreme points, 1990s [1])

Let G = (V(G), E(G)) be a connected simple graph, and $f \in B_{Lip} \subset Lip_0(G)$. Consider the subgraph H_f in G formed by $V(H_f) = V(G)$, and

$$E(H_f) := \left\{ \{u, v\} \in E(G) \mid \{u, v\} \text{ is satisfied by } f \right\}.$$

Then f is an extreme point of B_{Lip} *if and only if* H_f *is connected.*

イロト イポト イヨト イヨト

Magnetic Extreme Points

• If $f \in \operatorname{Lip}^{\sigma}(G)$ with $||f||_{\operatorname{Lip}^{\sigma}} \leq 1$, then f is called an **extreme point** of the unit ball in $\operatorname{Lip}^{\sigma}(G)$ (denoted $B_{\operatorname{Lip}^{\sigma}}$) provided that for any $g \in \operatorname{Lip}^{\sigma}(G)$, if it holds that

$$\left\{f+tg \mid t \in [-1,1]\right\} \subset B_{\operatorname{Lip}^{\sigma}},$$

then $g \equiv 0$.

• If $\{u, v\} \in E(G)$, we say that $\{u, v\}$ is σ -satisfied by f provided $|f(u) - \sigma_{uv}f(v)| = 1$.

Theorem (Magnetic extreme points, SR 2018)

Let (G, σ) be an unbalanced graph, and $f \in B_{Lip^{\sigma}}$. Then f is an extreme point of $B_{Lip^{\sigma}}$ if and only if the magnetic graph H_f defined by the vertex set V(G), the edge set

$$E(H_f) := \left\{ \{u, v\} \in E(G) \mid \{u, v\} \text{ is } \sigma\text{-satisfied by } f \right\},\$$

and which we equip with the same signature structure σ as on G, is unbalanced on each of its connected components.

Compression Equation

- We wish to somehow relate the *σ*-Arens-Eells norm for functions on a magnetic graph (*G*, *σ*) to the classical Arens-Eells norm for functions on the lift graph G.
- We define the **linear compression mapping** $C : \mathcal{A}(\widehat{G}) \to \mathcal{A}^{\sigma}(G)$ by setting, for each $m \in \mathcal{A}(\widehat{G}), u \in V(G)$,

$$(Cm)(u) = \sum_{\xi \in \mathbf{S}_p^1} \xi m(u, \xi).$$

Solution C is in fact a surjective contraction onto the space $\mathbb{A}^{\sigma}(G)$.

Theorem (Compression equation, SR 2018)

We have the equation

$$\|m^{\sigma}\|_{\mathcal{E}^{\sigma}} = \min\left\{\|m\|_{\mathcal{E}} \mid m \in \mathcal{E}(\widehat{X}); Cm = m^{\sigma}\right\}$$

for each $m \in \mathcal{A}^{\sigma}(G)$.

References

- Farmer, Jeff (1994). "Extreme points of the unit ball of the space of Lipschitz functions." Proc. Amer. Math. Soc. 121, no. 3, 807813.
- Robertson, Sawyer (2018). "Kantorovich Duality & Optimal Transport Problems on Magnetic Graphs."
- Solomon, Justin (2018). "Optimal Transport on Discrete Domains." Notes for AMS Short Course on Discrete Differential Geometry, San Diego.
- Weaver, Nik (1999). "Lipschitz algebras." World Scientific, River Edge, N.J.

Special Acknowledgements

- Prof. Javier Alejandro Chávez-Domínguez, research advisor
- Prof. Noel Brady, department chair
- University of Oklahoma College of Arts & Sciences

ヘロト ヘアト ヘビト ヘビト