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Objectives

1 Explain the concepts of magnetic graphs and their ‘lifts’
2 State a classical Kantorovich duality result and introduce a new

formulation for magnetic graphs
3 Characterize the extreme points in Lipschitz-type function spaces for

both classical and magnetic graphs
4 Present a ‘compression equation’
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Magnetic Graphs

1 Throughout, G = (V(G),E(G)) is a simple and connected combinatorial
(undirected) graph.

2 The oriented edge set of a graph G is given by

Eor(G) := {(u, v), (v,u) : u, v ∈ V(G),u ∼ v}.

3 A signature on a graph is a map

σ : Eor(G)→ {z ∈ C : |z| = 1} : (u, v) 7→ σuv,

satisfying the property σvu = σuv.
4 A pair (G, σ) is called a magnetic graph.
5 A magnetic graph (G, σ) is balanced if the product of the signature values

along any directed cycle is 1; otherwise, a magnetic graph is called
unbalanced.
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Some examples...

(a) 7-vertex cycle graph,
with real-valued
signature. The edges with
positive signature are in
blue, those with negative
signature are in red.

(b) 7-vertex cycle graph
with complex-valued
signature. All edges have
signature e

iπ
2 , illustrated

by the angular offset of the
blue arrow from the red
edges.

(c) 8-vertex cycle graph
with complex-valued
signature. All edges have
signature e

iπ
2 , illustrated

by the angular offset of the
blue arrow from the red
edges.

Figure: Three magnetic cycle graphs. Examples (a) and (b) are unbalanced, and (c) is
balanced.
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Magnetic lift graphs

1 If (G, σ) is a magnetic graph and σ takes values in a group of the p-th roots
of unity S1

p, we may construct a magnetic lift graph Ĝ via the vertex set

V(Ĝ) := V(G) × S1
p, with two vertices (u, ω1), (v, ω2) adjacent if and only if

u ∼ v and ω2 = ω1σuv.
2 Balanced magnetic graphs always have disconnected lift graphs;

unbalanced magnetic graphs usually have connected lift graphs.
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More examples...

(a) Lift of the
graph in (a) above.
The lower and
upper levels
correspond to the
signature values of
+1 and -1 resp.

(b) Lift of graph (b)
above; notice the 4
‘levels’ and
connectedness

(c) Lift of graph (c)
above, notice the
disconnectedness
of the graph.

(d) Lift of graph (c)
above with one cycle
highlighted.

Figure: Various lifts from the preceding magnetic graphs.
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Classical OT on Graphs

1 Let G = (V(G),E(G)) be a simple connected graph equipped with the
shortest-path metric d.

2 Suppose one has two mass (probability) distributions defined on the
vertices of a graph, say ν, µ : V(G)→ R, then we may consider the
question of how one can transport the initial mass distribution µ to the
terminal mass distribution ν.

3 This is formalized with the notion of a transport plan γ : V × V → R, a
non-negative function which quantifies the amount of mass moved from
vertex u to vertex v. Γ(µ, ν) is the set of all admissible µ, ν-transport plans.

4 Then the transport cost of µ and ν with respect to the metric d (Or the
1-Wasserstein metric) may be formulated:

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∑
u∈V(G)

∑
v∈V(G)

γ(u, v)d(u, v). (1)

5 Optimal transport on graphs is the study of this quantity, others like it,
and the transport plans which attain them.
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Classical Kantorovich Duality (1)

1 Let u0 ∈ V(G) be a fixed ‘base vertex.’ We define the Lipschitz space and
its norm:

Lip0(G) :=
{
f : V → R

∣∣∣ f (u0) = 0
}
, ||f ||Lip = max

u∼v
|f (u) − f (v)|

for each f ∈ Lip0(G).
2 Separately, we define for each pair of adjacent vertices u ∼ v the

combinatorial atom muv : V(G)→ R defined by

muv(x) := I{u} − I{v}.

3 We define the Arens-Eells space to be

Æ(G) := spanR{muv}u∼v

equipped with the norm

||m||Æ := inf
{∑

i

|ai|
∣∣∣ m =

∑
i

aimuivi

}
.
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Classical Kantorovich Duality (2)

Theorem (Kantorovich duality, 1940s [4])

The spaces Æ(G)∗ and Lip0(G) are isometrically isomorphic. It holds

W1(µ, ν) = sup
{∣∣∣∣∣ ∑

u∈V(G)

f (u)(µ(u) − ν(u))
∣∣∣∣∣ ∣∣∣ f ∈ Lip0(G), ||f ||Lip ≤ 1

}
= ||µ − ν||Æ

1 Note that the transport cost W1(µ, ν) we are interested in is now
formulated as the norm ||µ − ν||Æ.

2 Further note that the sup expression above may be restricted to those
f ∈ Lip0(G) which are convex extreme points of the unit ball in the space
Lip0(G).
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Magnetic Kantorovich Duality

1 The σ-Lipschitz space Lipσ(G) and its norm are defined by

Lipσ(G) := {f : V(G)→ C}, ||f ||Lipσ = max
u∼v
|f (u) − σuvf (v)|.

2 Similarly, we may define a magnetic atom for every pair of adjacent
vertices u, v, and the σ-Arens-Eells space to be

mσ
uv(x) := I{u} − σuvI{v}, Æσ(G) := spanC{m

σ
uv}u∼v

3 equipped with the norm

||m||Æσ := inf
{∑

i

|ai|
∣∣∣ m =

∑
i

aimσ
uivi

}
.

Theorem (Kantorovich duality, magnetic version, SR 2018)

For an unbalanced, simple magnetic graph (G, σ) the spaces Æσ(X) and Lipσ(X)∗ are
isometrically isomorphic.
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Classical Extreme Points

1 If f ∈ Lip0(G) with ||f ||Lip ≤ 1, then f is called an extreme point of the unit
ball in Lip0(G) (denoted BLip) provided that for any g ∈ Lip0(G), if it holds
that {

f + tg
∣∣∣ t ∈ [−1, 1]

}
⊂ BLip,

then g ≡ 0.
2 If {u, v} ∈ E(G), we say that {u, v} is satisfied by f provided |f (u) − f (v)| = 1.

Theorem (Classical extreme points, 1990s [1])

Let G = (V(G),E(G)) be a connected simple graph, and f ∈ BLip ⊂ Lip0(G). Consider
the subgraph Hf in G formed by V(Hf ) = V(G), and

E(Hf ) :=
{
{u, v} ∈ E(G)

∣∣∣ {u, v} is satisfied by f
}
.

Then f is an extreme point of BLip if and only if Hf is connected.
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Magnetic Extreme Points

1 If f ∈ Lipσ(G) with ||f ||Lipσ ≤ 1, then f is called an extreme point of the unit
ball in Lipσ(G) (denoted BLipσ ) provided that for any g ∈ Lipσ(G), if it
holds that {

f + tg
∣∣∣ t ∈ [−1, 1]

}
⊂ BLipσ ,

then g ≡ 0.
2 If {u, v} ∈ E(G), we say that {u, v} is σ-satisfied by f provided
|f (u) − σuvf (v)| = 1.

Theorem (Magnetic extreme points, SR 2018)

Let (G, σ) be an unbalanced graph, and f ∈ BLipσ . Then f is an extreme point of BLipσ if
and only if the magnetic graph Hf defined by the vertex set V(G), the edge set

E(Hf ) :=
{
{u, v} ∈ E(G)

∣∣∣ {u, v} is σ-satisfied by f
}
,

and which we equip with the same signature structure σ as on G, is unbalanced on
each of its connected components.
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Compression Equation

1 We wish to somehow relate the σ-Arens-Eells norm for functions on a
magnetic graph (G, σ) to the classical Arens-Eells norm for functions on
the lift graph Ĝ.

2 We define the linear compression mapping C : Æ(Ĝ)→Æσ(G) by
setting, for each m ∈Æ(Ĝ),u ∈ V(G),

(Cm)(u) =
∑
ξ∈S1

p

ξm(u, ξ).

3 C is in fact a surjective contraction onto the space Æσ(G).

Theorem (Compression equation, SR 2018)

We have the equation

||mσ
||Æσ = min

{
||m||Æ

∣∣∣ m ∈Æ(X̂);Cm = mσ
}

for each m ∈Æσ(G).
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