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Abstract. A twofold generalization of results from the theory of signed graphs to the case of signatures
taking values in arbitrary groups which then act on a normed space. The first concerns the notion of
signature balance, establishing a three-part characterization of the trait demonstrated by some signatures.
The second is a Kantorovich-type duality between Lipschitz- and Arens-Eells-type function spaces whose
norm and generator structures, respectively, incorporate the signature.

1. Introduction and Notation

1.1. Introduction. Signed graphs are combinatorial graphs equipped with a structure known as a
signature, which is a map assigning to each edge an element of a group which then acts on some normed
space (see ensuing definitions). Magnetic graphs, the particular case where the group is the unit circle in
the complex plane, have appeared in various forms since at least the 1950s [1], with applications ranging
from the social sciences [1] to quantum mechanics [8] and molecular modeling [5]. A similar (if more
general) type of signed graph is the connection graph, again the particular case where the group consists
of orthogonal matrices, which is distinguished from magnetic graphs by having a signature structure
whose group acts on higher dimensional spaces [9]. Both of these types of graphs have associated Laplace
operators which, while structured overall in the manner of the classical combinatorial Laplace operator
for graphs [2], incorporate their respective signature structures. Much of the literature in the past few
years has been dedicated to investigating relationships between the geometry of such graphs and the
eigenvalues of magnetic and connection Laplacians [7, 8, 9].

Simultaneously, researchers in many areas of computational discrete mathematics (esp. graph the-
ory, computer science) have demonstrated a renewed interest in posing and solving optimal transport
problems on discrete spaces [4, 6, 11]; an interest primarily motivated by the multifaceted applicability
of these problems. This paper sits at the intersection of these two research areas: signed graphs and
optimal transport. The main goal is to establish a Kantorovich duality result between Lipschitz- and
Arens-Eells-type function spaces using a classical approach, such as in the manner of Weaver [13], done
in the case of combinatorial graphs. This duality is part of the bedrock of general optimal transport
theory, both in the continuous and discrete settings [12, 13]. Our function spaces are distinguished from
the classical theory in that their norm structures and generating elements, respectively, incorporate the
signature structure associated with the graph.

This paper is divided into two parts, the latter of which is dedicated to proving the duality in the case
where the signature is taking values in a general group which itself is acting on an arbitrary Banach
space, thereby capturing both of the aforementioned examples and many more in one go. This duality,
however, is subtle in the sense that it will only occur for certain types of signed graphs which are not
balanced, a term used to characterize signed graphs which, put vaguely, possess signature structures
which are in some sense equivalent to a trivial signature structure. The notion of signature balance
has been encountered and studied many times by researchers [7, 9], and is often paired with equivalent
characterizations illustrating both its significance to the theory and flexibility in appearance. This
motivates the secondary goal of the paper, explored in the first part, which is to generalize the notion
of balance to case of general signed graphs.
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One interesting complication that arises in generalizing the standard duality and balance results is
that in moving from a space like C or Rn to a general Banach space X one loses, unsurprisingly, the self-
duality properties and Hilbertian structures inherent to those finite-dimensional spaces. It is because
of this that both of the principal results on balance and duality are paired with ‘dual’ versions. In
particular, each signature whose group action is on a normed space X yields a dual action on X∗,
its continuous dual; balance characterizations are then expressed separately for the original signature’s
group action and its dual action. A similar theme shows up in the duality results, with one posed for
Arens-Eells functions taking values in X and a second posed for functions taking values in X∗.

We punctuate the results with an appendix in the last section which contains mostly classical results
known to many experts but which may be new to the reader less familiar with functional analysis on
normed spaces. Some results in the appendix are just one or two steps beyond the general results seen
in reference texts on Banach spaces and operator theory and are included for completeness.

1.2. Notations and definitions. Let G = (V,E) be a connected, simple graph (that is, finite vertex
set, no loops or multiple edges) whose vertices we label u, v, w as needed. Γ is a group whose elements
we denote g, h; e is its identity element. We will use the big pi notation for general group element
products, i.e.

n∏
i=1

gi := g1 · g2 · · · gn−1 · gn,
1∏
i=n

gi := gn · gn−1 · · · g2 · g1, , gi ∈ Γ, 1 ≤ i ≤ n.

By ordering the index set clearly, we do not make any commutativity assumptions.
The oriented edges of G are given by

Eor(G) := {(u, v), (v, u)
∣∣ u, v ∈ V, u ∼ v}

and a signature is a map σ : Eor(G)→ Γ satisfying σvu = (σuv)
−1. The trivial signature is the one which

assigns the identity element to every oriented edge.
Let (X, ||·||X) be a normed space over F = R or C, which we take to be complete as necessary. X∗

will denote its dual space of continuous linear functionals, and we will use the angle bracket notation
〈φ, x〉 to denote the value of a functional φ ∈ X∗ on a vector x ∈ X. If two normed spaces X, Y
are isometrically isomorphic then we write X ≡ Y . V X will denote the vector space of all functions
f : V → X.

A left action α of Γ on a set A is an association g 7→ α(g) from the group to a mapping A→ A such
that

(identity) α(e)x = x for each x ∈ A
(compatibility) α(gh)x = α(g)(α(h)x) for each g, h ∈ G and x ∈ A.

An anticompatible left action β of Γ on a set A is an association g 7→ β(g) from the group to a
mapping A→ A such that

(identity) β(e)x = x for each x ∈ A
(anticompatibility) β(gh)x = β(h)(β(g)x) for each g, h ∈ G and x ∈ A.

If α is a left action of Γ on X, we define the dual action α∗ of Γ on X∗ via

(1) 〈α∗(g)φ, x〉 = 〈φ, α(g)x〉

Note that α∗ is an anticompatible left action of Γ on X∗.
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2. On balance

To motivate the first key result, we ask the reader to consider the following two propositions from
graph theory concerning certain specific examples of signed graphs. Both settings contain subfamilies
of graphs which are often called balanced, a property revealed by many different characterizations which
the propositions at issue serve to identify. In broad strokes, balanced signed graphs have the property
that the product of signature values along oriented cycles always yield the identity element of the group,
as well as the property that the signature structure is somehow equivalent to the trivial signature, in a
manner made precise by the following two propositions.

The first proposition concerns what are known as magnetic graphs. A magnetic graph is a pair (H, ρ)
where H is a simple graph and ρ is a signature taking values in the group S1 := {z ∈ C : |z| = 1}. In
the past, signature structures on these types of graphs have served to discretely model magnetic fields
or quantum mechanical systems [8]. In this setting, the group S1 acts by scalar multiplication on the
codomain of the functions of interest, C. Moreover, the duality structure is in the form of an inner
product. If τ : V → S1 is some function, then we may produce the τ -switched signature denoted ρτ via

(2) ρτuv := τ(u)ρuvτ(v)−1.

Two distinct signatures related in this manner by some switching function are said to be switching
equivalent.

Proposition 2.1. The following are equivalent:

(i) A magnetic graph (H, ρ) is balanced under the action of S1 on C.
(ii) For every oriented cycle expressed as a list of incident oriented edges in the form

((u0, u1), (u1, u2), . . . , (un−1, un = u0)),

it holds
∏n−1

i=0 ρuiui+1
= 1.

(iii) ρ is switching equivalent to the trivial signature.

The relationship between balance and switching equivalence is noted by Lange, Liu, Peyerimhoff and
Post [7, Proposition 3.2].

The second type of graph structure with which we are concerned is connection graphs, that is, pairs
(F, ω) where F is a simple graph and ω : Eor(F )→ On(F) is a signature on F taking values in the group
On(F) of orthogonal matrices with entries in the field F. In this setting, the normed space of interest
is Fn where F = R or C. These types of graphs are of interest mathematically as a generalization of
magnetic graphs, but also for their use in applied topics [9]. The action here of On(F) on Fn is matrix
multiplication.

Proposition 2.2. The following are equivalent:

(i) A connection graph (F, ω) is balanced under the action of On(F) on Fn.
(ii) For every oriented cycle expressed as a list of incident oriented edges in the form

((u0, u1), (u1, u2), . . . , (un−1, un = u0)),

it holds
∏n−1

i=0 ωuiui+1
= Idn, the n× n identity matrix.

(iii) ω is switching equivalent to the trivial signature, in the sense that there exists T : V → On(F)
such that

T (u)ωuvT (v)−1 = Idn

for each u ∼ v.

In both of the preceding examples, the spaces on which the groups were acting (F,Fn resp.) have
Hilbertian, and hence self-dual, structures. A general Banach space, of course, does not. This complica-
tion only substantively affects the duality results in the subsequent section of this paper, but motivates
the development of not one but two characterizations of signature balance: one for the action of the sig-
nature on the Banach space, and a second for the dual action of the signature on the dual to the Banach
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space. The second result is phrased more generally than it is motivated, in terms of an anti-compatible
left action on an arbitrary normed space.

Theorem 2.3 (Signature equivalence (a)). Let G = (V,E) be a connected simple graph, σ a signature
on G taking values in a group Γ, X a normed space, and α an action of of Γ on X. Then the following
are equivalent:

(i) There exists a function f : V → X, not identically 0, such that for every oriented edge (u, v) ∈
Eor(G), it holds

f(u) = α(σuv)f(v).

(ii) There exists a function f : V → X, not identically 0, such that for each u ∈ V and each directed
cycle of the form

((u = u0, u1), (u1, u2), . . . , (u`−2, u`−1), (u`−1, u` = u)) ⊂ Eor(G)

it holds

α

(
`−1∏
i=0

σuiui+1

)
f(u) = f(u),

(iii) There exists a nonzero element x ∈ X and some u0 ∈ V such that for each directed cycle of the
form

((u0, u1), (u1, u2), . . . , (un−2, un−1), (un−1, un = u0)) ⊂ Eor(G)

it holds

α

(
n−1∏
i=0

σuiui+1

)
x = x.

Proof. First let us assume condition (i) holds, that is, let f : V → X be some nonzero function satisfying
f(u) = α(σuv)f(v) for every oriented edge (u, v) ∈ Eor(G). We claim that this function f satisfies (ii).
Let u ∈ V be fixed and suppose

((u = u0, u1), (u1, u2), . . . , (un−2, un−1), (un−1, un = u)) ⊂ Eor(G)

is a directed cycle originating and terminating at u. Then,

α

(
n−1∏
i=0

σuiui+1

)
f(u) =

(
n−1∏
i=0

α(σuiui+1
)

)
f(u)

= α(σu0u1) · α(σu1u2) · · ·α(σun−1un)f(un)

= α(σu0u1) · α(σu1u2) · · ·α(σun−2un−1)f(un−1)

· · · = α(σu0u1)f(u1) = f(u)

as desired.
That (ii) implies (iii) is clear, i.e. choose any nonzero value f(u) of the function in (ii) and condition

(iii) holds.
It remains to prove that condition (iii) implies condition (i). To this end, let u0 ∈ V, x ∈ X satisfy

(iii). We need to supply a function f as in (i); to do this, define f(u0) = x. Then for any vertex u ∈ V ,
let

((u = v0, v1), (v1, v2), ..., (vn−2, vn−1), (vn−1, vn = u0)) ⊂ Eor(G)

be a path originating at u and terminating at u0. Temporarily put

(3) f1(u) = α

(
n−1∏
i=0

σvivi+1

)
x.

Now let

((u = v′0, v
′
1), (v′1, v

′
2), ..., (v′m−2, v

′
m−1), (v′m−1, v

′
m = u0)) ⊂ Eor(G)
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be a separate path between u and u0 and temporarily set

f2(u) = α

(
m−1∏
i=0

σv′iv′i+1

)
x.

Notice that

((v′m = u0, v
′
m−1), . . . , (v′2, v

′
1), (v′1, v

′
0 = u), (v0, v1), (v1, v2), . . . , (vn−1, vn = u0))

is an oriented cycle originating and terminating at u0. Via (iii) it holds

α

(
1∏

j=m

σv′jv′j−1

)
α

(
n−1∏
i=0

σvivi+1

)
x = x.

In turn,

α

(
1∏

j=m−1

σv′jv′j−1

)
α

(
n−1∏
i=0

σvivi+1

)
x = α(σv′m−1v

′
m

)x

α

(
1∏

j=m−2

σv′jv′j−1

)
α

(
n−1∏
i=0

σvivi+1

)
x = α(σv′m−2v

′
m−1

)α(σv′m−1v
′
m

)x

α

(
n−1∏
i=0

σvivi+1

)
x = α(σv′0v′1)α(σv′1v′2) · · ·α(σv′m−2v

′
m−1

)α(σv′m−1v
′
m

)x.

That is, f1(u) = f2(u) ensuring that our path-based construction is well-defined. Extend f to every
u ∈ V as in equation (3). Suppose (u, v) ∈ E(or)(G) is a fixed oriented edge, and let

((v0 = v, v1), (v1, v2), ..., (vk−2, vk−1), (vk−1, vk = u0)) ⊂ Eor(G)

be a path connecting v to u0. Then it holds

f(u) = α(σuv)

(
k−1∏
i=0

α(σvivi+1
)

)
x = α(σuv)f(v)

as claimed. �

What follows is the aforementioned ‘dual’ version to the preceding theorem, whose proof is symmet-
rically identical to that of Theorem 2.3, with care taken to reverse the order of certain products to
accommodate the anticompatibility of the action in question.

Theorem 2.4 (Signature equivalence (b)). Let G = (V,E) be a connected simple graph, σ a signature
on G taking values in a group Γ, X a normed space, and β an anticompatible action of of Γ on X. Then
the following are equivalent:

(i) There exists a function f : V → X, not identically 0, such that for every oriented edge (u, v) ∈
Eor(G), it holds

f(u) = β(σuv)f(v).

(ii) There exists a function f : V → X, not identically 0, such that for each u ∈ V and each directed
cycle of the form

((u = u0, u1), (u1, u2), ..., (u`−2, u`−1), (u`−1, u` = u)) ⊂ Eor(G)

it holds

β

(
`−1∏
i=0

σui+1ui

)
f(u) = f(u),
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(iii) There exists a nonzero element x ∈ X and some u0 ∈ V such that for each directed cycle of the
form

((u0, u1), (u1, u2), ..., (un−2, un−1), (un−1, un = u0)) ⊂ Eor(G)

it holds

β

(
n−1∏
i=0

σui+1ui

)
x = x.

Let us introduce some terminology we will use to refer to these two types of signatures/left actions.

(i) σ is said to be balanced under the action α on X if any of the conditions in Theorem 2.3 is
satisfied.

(ii) σ is said to be ∗-balanced under the action β on X if any of the conditions in Theorem 2.4 is
satisfied.

3. On duality

In this section, we are interested in proving that two spaces, one Lipschitz-type and another Arens-
Eells type, are related by duality when a signed graph satisfies various balance conditions as needed.
The main argument will require several preliminary results which will constitute the first part of this
section. The first lemma is somewhat independent from the subsequent ones and is mainly supplied for
its proof which will be helpful in proving the third lemma. Throughout this section, the normed space
X we assume to be complete. Also, we will have several occasions to use classical results whose proofs
we have placed in an appendix.

Let us first introduce two useful normed spaces. We define `1(V ;X) := (V X , ||·||`1(V ;X)), where

||f ||`1(V ;X) =
∑
u∈V

||f(u)||X .

Similarly we define `∞(V ;X) := (V X , ||·||`∞(V ;X)), where

||f ||`∞(V ;X) = max
u∈V
||f(u)||X .

Lemma 3.1. We have the identification (`1(V ;X))∗ ≡ `∞(V ;X∗).

Proof. This lemma can be proved as a straightforward consequence of Lemma 4.1, proved in the appen-
dix. For the purposes of a subsequent argument, we will supply the particular mappings T1, T2 which
play the same role as those in the proof of Lemma 4.1, but contextualized to these spaces of interest.
The idea comes from [13, Thm. 2.2.2]. Begin by defining T1 : `∞(V ;X∗)→ (`1(V ;X))∗ via the formula

〈T1p, f 〉 =
∑
u∈V

〈p(u), f(u)〉

for any p ∈ `∞(V ;X∗) and f ∈ `1(V ;X). The inverse mapping T2 : (`1(V ;X))∗ → `∞(V ;X∗) is given
by the formula

〈(T2φ)(u), x〉 = 〈φ, xδu〉
for each φ ∈ (`1(V ;X))∗, u ∈ V and x ∈ X. As an exercise the reader may verify the straightforward
estimates ||T1|| ≤ 1 and ||T2|| ≤ 1, as well as T1T2 = Id, T2T1 = Id to complete the proof. �

Definition 3.2. The signed Lipschitz space is given by

Lipσ(G;X) := {f : V → X
∣∣ ∃C ≥ 0 s.t. ||f(u)− α(σuv)f(v)||X ≤ C ∀u ∼ v}.

equipped with the semi-norm

||f ||Lipσ(G;X) := max
u∼v
||f(u)− α(σuv)f(v)||X .
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Definition 3.3. Letting a ∈ X and u, v ∈ V be any adjacent vertices, we can define amσ
uv : V → X via

amσ
uv(w) =


a if w = u

−α(σuv)a if w = v

0 otherwise

, ∀w ∈ V.

along with the signed Arens-Eells space

Æσ(G;X) := {amσ
uv

∣∣ u, v ∈ V, u ∼ v, a ∈ X}

equipped with the semi-norm defined by

||m||Æσ(G;X) = inf

{
n∑
i=1

||ai||X
∣∣m =

n∑
i=1

aim
σ
uivi

, ui ∼ vi, ai ∈ X, 1 ≤ i ≤ n

}
.

It is clear that both of our defined norm structures above form semi-norms; that is, they are homo-
geneous and subadditive. While Æσ(G;X) will be a true normed space in general, Lipσ(G;X) will be a
normed space if σ is not balanced under the action of α on X. Interestingly and symmetrically, while
Lipσ(G;X) = V X as vector spaces, Æσ(G;X) will coincide with V X when σ is not ∗-balanced under
the action α∗ on X∗.

Lemma 3.4. Æσ(G;X) is a normed space, and if σ is not balanced under the action of α on X then
Lipσ(G;X) is also a normed space.

Proof. All that remains to be proved is that the norms on Lipσ(G;X) and Æσ(G;X) as previously
defined are definite. Suppose m ∈ Æσ(G;X) satisfies ||m||Æσ(G;X) = 0. For positive integer k, find some

finite linear combination of atoms
∑

i a
k
im

σ
uki v

k
i

for which

m =

nk∑
i=1

akim
σ
uki v

k
i
,

nk∑
i=1

∣∣∣∣aki ∣∣∣∣X <
1

k
.

Then,

||m||`1(V ;X) =

∣∣∣∣∣
∣∣∣∣∣
nk∑
i=1

akim
σ
uki v

k
i

∣∣∣∣∣
∣∣∣∣∣
`1(V ;X)

≤
nk∑
i=1

∣∣∣∣∣∣akimσ
uki v

k
i

∣∣∣∣∣∣
`1(V ;X)

≤ 2

nk∑
i=1

∣∣∣∣aki ∣∣∣∣X <
2

k
→ 0 as k →∞.

From the definiteness of the ||·||`1(V ;X) norm, the claim is verified. Now suppose f ∈ Lipσ(G;X) satisfies

||f ||Lipσ(G;X) = 0. This means that for every edge (u, v) ∈ Eor(G), it holds f(u) = α(σuv)f(v), so either

f = 0 or σ is balanced under the action α on X by the characterization in Theorem 2.3 (condition 2),
a contradiction. �

Via a similar argument utilizing the signature equivalence in Theorem 2.4, we can get a dual version
of the preceding lemma.

Lemma 3.5. Æσ(G;X∗) is a normed space, and if σ is not ∗-balanced under the action of α∗ on X∗

then Lipσ(G;X∗) is also a normed space.

Lemma 3.6. Lipσ(G;X∗) = V X∗ as vector spaces, and if σ is not balanced under the action α on X,
then the equality Æσ(G;X∗) = V X∗ holds as well.

Proof. The first equality is clear by the simplicity of G; for the latter, suppose Æσ(G;X∗) is a proper
subspace of `∞(V ;X∗) (as vector spaces rather than Banach spaces). Then the image of this space
under the mapping T1 as supplied in the proof of Lemma 3.1, would be a proper subspace of `1(V ;X)∗.
Recall that for each ψ ∈ X∗, oriented edge (u, v), and f ∈ `1(V ;X) we have

〈T1 (ψmσ
uv) , f 〉 = 〈ψ, f(u)− α(σuv)f(v)〉.
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If we formally define ψMσ
uv ∈ `1(V ;X)∗ to be the functional obtained by T1 (ψmσ

uv), then the image of
Æσ(G;X∗) under T1 may be expressed

Æ̃ := ImT1 [Æσ(G;X∗)] = {ψMσ
uv : ψ ∈ X∗, u ∼ v}, ,

with

||M ||Æ̃ := inf

{
n∑
i=1

||ψ||X∗ , M =
∑
i=1

ψiM
σ
uivi

, ui ∼ vi

}
Take as proved that this space is a proper weak-∗ closed subspace in `1(V,X)∗. Then by Lemma
4.2 we can find a a nonzero evaluation functional ef ∈ `1(V ;X)∗∗, that is, an element of the canonical
embedding of `1(V ;X) into its double-dual corresponding to some nonzero function f ∈ `1(V ;X), which

is identically 0 on every element of Æ̃, i.e. for every ψ ∈ X∗ and u ∼ v, it holds

〈ef , ψMσ
uv〉 = 0 ⇐⇒ 〈ψ, f(u)− α(σuv)f(v)〉 = 0 ⇐⇒ f(u)− α(σuv)f(v) = 0

that is, σ is balanced under the action α on X via Theorem 2.3, contradicting the hypothesis.

Returning now to the unproven claim that Æ̃ is weak-∗ closed, we wish to invoke the Theorem 4.6.

To do so we must first prove that Æ̃ is both norm closed and may be represented as a finite sum of
subspaces, each of which is itself weak-∗ closed. Attacking the first point, fix a set D ⊂ Eor(G) with
the property that (u, v) ∈ D ⇐⇒ (v, u) /∈ D; this is a set of formal oriented edges containing one

representative for each combinatorial edge. Given N ∈ Æ̃, and ε > 0, we can find a family of functionals
{ψ(u,v)}(u,v)∈D, some of which may be zero, for which

N =
∑

(u,v)∈D

ψ(u,v)M
σ
uv, and

∑
(u,v)∈D

∣∣∣∣ψ(u,v)

∣∣∣∣
X∗
≤ ||N ||Æ̃ + ε.

So to prove that Æ̃ is norm closed, via [10, Thm. 1.3.9] it suffices to prove that every absolutely

convergent series in this space converges. To this end, suppose we have a sequence (Mn)n∈N ⊂ Æ̃ for
which

∑∞
n=1 ||Mn|| <∞. For every n we can find a family of functionals {ψn(u,v)}(u,v)∈D for which

Mn =
∑

(u,v)∈D

ψn(u,v)M
σ
uv, and

∑
(u,v)∈D

∣∣∣∣ψn(u,v)

∣∣∣∣
X∗
≤ ||Mn||Æ̃ +

1

2n
.

Then it follows that for each (u, v) ∈ D,
∞∑
n=1

∣∣∣∣ψn(u,v)

∣∣∣∣
X∗
≤

∞∑
n=1

(
||Mn||Æ̃ +

1

2n

)
<∞.

Since X is complete and the series
∑∞

n=1 ψ
n
(u,v) is absolutely summable in X∗, it has a limit ψ(u,v). We

claim that
∞∑
n=1

Mn =
∑

(u,v)∈D

ψ(u,v)M
σ
uv.

We test their difference at the partial sum level:∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
n=1

Mn −
∑

(u,v)∈D

ψ(u,v)M
σ
uv

∣∣∣∣∣∣
∣∣∣∣∣∣
Æ̃

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

(u,v)∈D

(
N∑
n=1

ψn(u,v) − ψ(u,v)

)
Mσ

uv

∣∣∣∣∣∣
∣∣∣∣∣∣
Æ̃

≤
∑

(u,v)∈D

∣∣∣∣∣
∣∣∣∣∣
(

N∑
n=1

ψn(u,v) − ψ(u,v)

)
Mσ

uv

∣∣∣∣∣
∣∣∣∣∣
Æ̃

≤
∑

(u,v)∈D

∣∣∣∣∣
∣∣∣∣∣
(

N∑
n=1

ψn(u,v) − ψ(u,v)

)∣∣∣∣∣
∣∣∣∣∣
X∗

< ε for N large,
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since ψn(u,v) → ψ(u,v) in X∗. We conclude that Æ̃ is indeed closed in the norm ||·||Æ̃. With the first point
addressed, take the following decomposition:

Æ̃ =
∑

(u,v)∈D

Ã(u,v), where Ã(u,v) :=
{
ψMσ

uv

∣∣ ψ ∈ X∗}
It remains to be shown that these spaces are weak-∗ closed individually. To do this, we will need to
use the following evaluation operator, based on T2 as in Lemma 3.1. Letting w0 ∈ V be fixed, define
Tw0

2 : `2(V ;X)∗ → X∗ via Tw0
2 (Ψ) = (T2Ψ)(w0) for each w ∈ V and Ψ ∈ `1(V ;X)∗. It can easily be

shown that this operator is weak-∗ to weak-∗ continuous by a net argument; specifically, convergence of
the image of a net in X∗ is immediately implied by net convergence in the domain by the definition of

T2. Now take a net (Ψλ)λ∈Λ ⊂ Ã(u,v) converging weak-∗ to some Ψ ∈ `1(V ;X)∗. We want to produce
some ψ ∈ X∗ for which Ψ = ψMσ

uv. The idea is to reveal a limit of this net under the mappings T 2
u , T

2
v .

Since (Ψλ)λ∈Λ ⊂ Ã(u,v), we can find a net ψλ ∈ X∗ for which Ψλ = ψλM
σ
uv for each λ ∈ Λ. Notice that

for any λ ∈ Λ, x ∈ X we have〈(
T 2
uΨλ

)
, x
〉

= 〈(T2ψλM
σ
uv) (u), x〉 = 〈ψλMσ

uv, xδu〉 = 〈ψλ, x〉.

That is, (T u2 )(Ψλ) = ψλ. Since T u2 is weak-∗ continuous, we can define ψ to be the weak-∗ limit of
(T u2 )(Ψλ) in X∗, that is, T u2 (Ψ). Using a similar argument, one can prove that (T v2 )(Ψλ) = −α∗(σuv)ψλ,
and in turn, lim(T u2 )(Ψλ) = −α∗(σuv)ψ. Additionally it follows readily that Tw2 (Ψλ) = 0 for any other
vertex w 6= u, v. This is all to say that T2Ψ = ψmσ

uv ∈ `∞(V ;X∗). One can check that the inverse image

of this function under the mapping T1, c.f. Lemma 3.1, is ψMσ
uv ∈ Ã(u,v), proving that Ã(u,v) is weak-∗

closed. Having decomposed the norm-closed space Æ̃ into the sum of finitely many weak-∗ closed pieces,

we can invoke the Theorem 4.6 and conclude as claimed earlier that Æ̃ is weak-∗ closed. �

Lemma 3.7. Lipσ(G;X) = V X as vector spaces, and if σ is not ∗-balanced under the action α∗ on X∗,
then the equality Æσ(G;X) = V X holds as well.

Proof. That Lipσ(G;X) = V X is follows from our requirement that G be simple. Suppose σ is not ∗-
balanced under the action α∗ on X∗ and that Æσ(G;X) = V X is a proper, closed subspace of `1(V ;X)
(to see that the space is closed, use an argument similarly identical to that presented in the preceding
proof). We may then obtain a functional Ψ ∈ (`1(V ;X))∗ which is not identically 0 but which vanishes
on Æσ(G;X). As we showed in the proof of Lemma 3.1, we may then obtain a functional-valued function
T2Ψ ∈ `∞(V ;X∗) which is not identically 0 satisfying 〈T2Ψ(u), x〉 = 〈Ψ, xδu〉. Then the following holds
for any x ∈ X and any adjacent u, v ∈ V :

〈(T2Ψ)(u)− α∗(σuv)(T2Ψ)(v), x〉 = 〈(T2Ψ)(u), x〉 − 〈(T2Ψ)(v), α(σuv)x〉
= 〈Ψ, xδu〉 − 〈Ψ, α(σuv)xδv〉 = 〈Ψ,mσ

uv〉 = 0

whence (T2Ψ)(u) − α∗(σuv)(T2Ψ)(v) = 0 for each u ∼ v, implying T2Ψ satisfies the condition (2) in
Theorem 2.4 contrary to our unbalanced assumption on σ. �

We now prove the two central results of this section.

Theorem 3.8. If σ is not ∗-balanced under the action α∗ on X∗, then we have the identification

Æσ(G;X)∗ ≡ Lipσ(G;X∗).

Proof. Note first that as a consequence of the balance assumption, via Lemmas 3.5 and 3.7, Lipσ(G;X∗)
is a normed space and Æσ(G;X) = V X as vector spaces. We will proceed as in the proof of Lemma
3.1, but supply more detail on the estimates since the norms in these spaces are different from those
handled in the previous duality lemma. T1 : Lipσ(G;X∗)→ Æσ(G;X)∗ is given by the formula

〈T1Ψ,m〉 :=
∑
u∈V

〈Ψ(u),m(u)〉.
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For m ∈ Æσ(G;X) fixed, let m =
∑n

i=1 aim
σ
uivi

where ai ∈ X and ui ∼ vi for each 1 ≤ i ≤ n. Then it
holds

|〈T1Ψ,m〉| =
∣∣∑
u∈V

〈Ψ(u),m(u)〉
∣∣ ≤ n∑

i=1

∣∣〈Ψ(ui), ai〉 − 〈Ψ(vi), α(σuivi)ai〉
∣∣

=
n∑
i=1

∣∣〈Ψ(u)− α∗(σuivi)Ψ(vi), ai〉
∣∣ ≤ ||Ψ||Lipσ(G;X∗)

n∑
i=1

||ai||X

After taking an inf over the families {ai} which represent m, and a sup over all m with norm at most
one, one obtains ||T1|| ≤ 1. Next, T2 : Æσ(G;X)∗ → Lipσ(G;X∗) is given implicitly by the formula

〈T2φ(u), x〉 = 〈φ, xδu〉.

Notice that xδu ∈ Æσ(G;X) since σ is unbalanced. Once again we may estimate for any φ ∈ Æσ(G;X)∗,
x ∈ X and u, v adjacent:∣∣〈T2φ(u)− α∗(σuv)T2φ(v), x〉

∣∣ =
∣∣〈φ, xδu〉 − 〈φ, α(σuv)xδv〉

∣∣
= |〈φ, xmσ

uv〉| ≤ ||φ||Æσ(G;X)∗ ||xm
σ
uv||Æσ(G;X)

≤ ||φ||Æσ(G;X)∗ ||x||X .

First taking a sup over all ||x||X ≤ 1, then a max over all vertices u ∼ v will yield ||T2|| ≤ 1. The reader
is invited to verify that T1T2 = Id, and T2T1 = Id to complete the proof. �

Theorem 3.9. If σ is not balanced under the action α on X, then we have the identification

Æσ(G;X∗) ≡ Lipσ(G;X)∗.

The proof of this claim follows the preceding argument mutatis mutandis. The hypothesis that σ is
not balanced under the action α ensures that Lipσ(G;X)∗ is a well-defined normed space, via Lemma
3.4, and that Æσ(G;X∗) = V X∗ via Lemma 3.6.

As a final remark, notice that both of the preceding duality results hold only when the signature is
doubly unbalanced.

4. Appendix: Functional Analysis

This appendix will be used to write down various results used in the preceding work which are generally
known to experts but may elude the casual reader. In the first lemma we write down a classical duality
result, the second a useful hyperplane separation lemma, and the three which follow lead up to the
main result of interest at the end. First we attend to some preliminary definitions. Throughout, X is a
normed space which may or may not be complete as the theorems require.

Recall that if X is a normed space, X# is its algebraic dual ; that is, the linear space consisting of
all (not necessarily continuous) linear functionals. Also recall the definitions of the annihilator and
pre-annihilator subspaces for subsets A,B of a normed space X and its dual X∗, resp.:

A⊥ := {x∗ ∈ X∗ : 〈x∗, x〉 = 0 ∀x ∈ A}
⊥B := {x ∈ X : 〈x∗, x〉 = 0 ∀x∗ ∈ B}.

Letting X1, X2, . . . Xn be normed spaces, we will utilize in various forms the direct product of these
spaces, which we will norm in two different manners. First define the general product space

X1 ⊕p X2 ⊕p · · · ⊕p Xn := {x = (x1, x2, . . . , xn)
∣∣ xi ∈ Xi, 1 ≤ i ≤ n},

equipped with the obvious inherited algebraic operations. The norm of an element in one of these spaces
we denote ||·||⊕p ; we will only need the structures corresponding to p = 1,∞, whose norms we define
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via:

||x||⊕1
:=

n∑
i=1

||xi||Xi

||x||⊕∞ := max
1≤i≤n

||xi||Xi

where the Xi’s are suppressed in the norm subscript since it will be understood in context which spaces
are forming the direct product. If, having fixed spaces Xi, we are considering a product of their respective
dual spaces, the norm subscript will adopt an asterisk.

As a small final note, if z ∈ C, Re(z) ∈ R is its real part.

Lemma 4.1. Let X1, X2, . . . , Xn be normed spaces. Then we have the following identification:

(X1 ⊕1 X2 ⊕1 · · · ⊕1 Xn)∗ ≡ X∗1 ⊕∞ X∗2 ⊕∞ · · · ⊕∞ X∗n.
Specifically, each Ψ ∈ (X1 ⊕1 X2 ⊕1 · · · ⊕1 Xn)∗ is identified with an n-tuple

(ψ1, ψ2, . . . , ψn) ∈ X∗1 ⊕∞ X∗2 ⊕∞ · · · ⊕∞ X∗n
so that for each x ∈ (X1 ⊕1 X2 ⊕1 · · · ⊕1 Xn), it holds 〈Ψ,x〉 =

∑n
i=1 〈ψi, xi〉.

Proof. Define

S1 : (X1 ⊕1 X2 ⊕1 · · · ⊕1 Xn)∗ → X∗1 ⊕∞ X∗2 ⊕∞ · · · ⊕∞ X∗n : Ψ 7→ (ψ1, ψ2, . . . , ψn)

by the formula

〈ψi, x〉 :=

〈
Ψ, (0, 0, . . . , x, . . . , 0)︸ ︷︷ ︸

i-th component

〉
,

for each x ∈ Xi, 1 ≤ i ≤ n. Notice that for each 1 ≤ i ≤ n, x ∈ Xi, it holds

|〈ψi, x〉| ≤ ||Ψ||⊕∗1 ||x||Xi
Taking a max over the ψi’s, we get ||SΨ||⊕∞ ≤ ||Ψ||⊕∗1 . Now define

S2 : X∗1 ⊕∞ X∗2 ⊕∞ · · · ⊕∞ X∗n → (X1 ⊕1 X2 ⊕1 · · · ⊕1 Xn)∗

by the following formula:

〈S2ψ,x〉 :=
n∑
i=1

〈ψi, xi〉

for each x ∈ X1 ⊕1 X2 ⊕1 · · · ⊕1 Xn, where ψ = (ψ1, ψ2, . . . , ψn) ∈ X∗1 ⊕∞ X∗2 ⊕∞ · · · ⊕∞ X∗n. We then
have the straightforward estimate |

∑n
i=1 〈ψi, xi〉| ≤ ||ψ||⊕∗∞ ||x||⊕1

. The verification that S2S1 = Id and
S1S2 = Id is straightforward. �

Lemma 4.2. Suppose X is a normed space over field F = R or C, W ⊂ X# is a subspace in the
algebraic dual to X, K ⊂ X is a nonempty convex, W -weakly closed subset, and x0 ∈ X is a point in
X with x0 /∈ K. Then there exists φ ∈ W such that

Re(φ(x0)) < inf
y∈K

Re(φ(y))

Proof. This is a simple corollary of the general Hyperplane separation theorem for locally convex topo-
logical vector spaces over F, see e.g. [3, p. 418, Cor. 11], first noting that X is a locally convex
topological vector space when endowed with the W -weak topology whose topological dual is itself W
[10, Thm. 2.4.11]. The Hyperplane separation theorem then yields a functional which separates the
compact set {x0} and the convex, W -weakly closed set K as desired. �

Lemma 4.3. Let X, Y be Banach spaces. If T : X → Y is an isometric isomorphism, then T ∗ : Y ∗ →
X∗ is also an isometric isomorphism.
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Proof. Since T is an isometric isomorphism, the adjoint mappings T ∗ : Y ∗ → X∗ and (T−1)∗ : X∗ → Y ∗

are also bounded linear operators between the dual spaces of X, Y . All that remains to be checked is
that (T−1)∗ = (T ∗)−1, i.e. (T−1)∗T ∗ = IdY ∗ and T ∗(T−1)∗ = IdX∗ . Regarding the former, we compute
for y∗ ∈ Y ∗ and y ∈ Y ,〈

(T−1)∗T ∗y∗, y
〉

=
〈
T ∗y∗, T−1y

〉
=
〈
Y ∗, TT−1y

〉
= 〈y∗, y〉.

whence the former quality holds. The reader is invited to check the latter. �

Lemma 4.4. Let X be a Banach space, and suppose A ⊂ X∗ is weak-∗ closed subspace. Then there
exists a Banach space Z for which A ≡ Z∗. More precisely, A ≡ (X/⊥A)∗ and the isometric isomorphism
giving this identification is the adjoint π∗ where π : X 7→ X/⊥A is the canonical quotient mapping.

For a proof of this fact, see [10, Thm 1.10.17], using the closed subspace ⊥A and observing that the
very identification constructed in the proof is the adjoint of the canonical quotient mapping as claimed.

Lemma 4.5. Let X, Y be Banach spaces, and suppose T : X → Y is a bounded linear operator, with
T ∗ : Y ∗ → X∗. If R(T ∗) is (norm) closed in X∗, then R(T ∗) is weak-∗ closed in X∗.

Proof. By the First Isomorphism Theorem for Banach Spaces [10, 1.7.14], we can find an isomorphism
S : X/ ker(T )→ R(T ) ⊂ Y so that the following diagram commutes:

X R(T )

X/ ker(T )

π

T

S

Taking adjoints, we obtain the following diagram:

X∗ R(T )∗

(X/ ker(T ))∗

T ∗

S∗
π∗

By Lemma 4.3, S∗ is also an isomorphism; in particular, since S∗ is surjective, R(T ∗) = R(π∗). By
[10, 1.10.17],

π∗ : (X/ ker(T ))∗ → (ker(T ))⊥ ⊂ X∗

will be an isometric isomorphism, and by applying the preceding lemma and [10, Prop. 2.6.6(c)], we
have

R(T ∗) = R(π∗) = (ker(T ))⊥ = R(T ∗)
w∗

so that R(T ∗) is weak-∗ closed. �

Theorem 4.6. If A1, A2, . . . , An ⊂ X∗ is a finite collection of weak-∗ closed subspaces, and the sum∑n
j=1Aj ⊂ X∗ is (norm) closed, then

∑n
j=1 Aj is weak-∗ closed.

Proof. By Lemma 4.4, for 1 ≤ j ≤ n we can find isometric isomorphisms π∗j : Z∗j → Aj where Zj =

(X/⊥Aj). Let
Z∗1 ⊕∞ Z∗2 ⊕∞ · · · ⊕∞ Z∗n

be the direct sum of spaces Z∗j , 1 ≤ j ≤ n equipped with the `∞ norm. Define the mapping

S : Z∗1 ⊕∞ Z∗2 ⊕∞ · · · ⊕∞ Z∗n → X∗ : (z∗1 , z
∗
2 , . . . , z

∗
n) 7→

n∑
j=1

π∗j (z
∗
j ).
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Notice that by hypothesis, R(S) =
∑n

j=1 Aj ⊂ X∗ is (norm) closed. To complete the proof by invoking
Lemma 4.5, we need to produce an operator T for which S = T ∗. Define

T : X → Z1 ⊕1 Z2 ⊕1 · · · ⊕1 Zn : x 7→ (π1(x), π2(x), . . . , πn(x)).

where (Z1 ⊕1 Z2 ⊕1 · · · ⊕1 Zn)∗ ≡ Z∗1 ⊕∞ Z∗2 ⊕∞ · · · ⊕∞ Z∗n. Given any ψ ∈ (Z1 ⊕1 Z2 ⊕1 · · · ⊕1 Zn)∗,
x ∈ X, we check

〈T ∗ψ, x〉 = 〈ψ, Tx〉 = 〈ψ, (π1(x), π2(x), . . . , πn(x))〉

For 1 ≤ j ≤ n, we can find ψj ∈ (X/⊥Aj)
∗ so that ψ is identified with the n-tuple (ψ1, ψ2, . . . , ψn) ∈

Z∗1 ⊕∞ Z∗2 ⊕∞ · · · ⊕∞ Z∗n. That is,

〈ψ, (π1(x), π2(x), . . . , πn(x))〉 = 〈(ψ1, ψ2, . . . , ψn), (π1(x), π2(x), . . . , πn(x))〉 =
n∑
j=1

ψjπj(x).

So, up to isometric isomorphism, when T ∗ is viewed as a mapping from Z∗1 ⊕∞ Z∗2 ⊕∞ · · · ⊕∞ Z∗n → X∗,
we have that T ∗ = S. Since T ∗ is a bounded linear operator with closed range, by Lemma 4.5 its range,∑n

j=1Aj, is weak-∗ closed. �
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