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Talk Highlights and Objectives

Special acknowledgement

@ Thanks to my research advisor, Prof. Javier Alejandro Chavez-Dominguez.

@ Background Explain the notions of signed graphs and signature balance in both concrete and
abstract settings

@ Result Give some characterizations of signature balance in the abstract setting
© Background Give a short primer on the well-established Kantorovich duality for graphs

@ Result Find sufficient conditions on a signed graph for a specialized Kantorovich-type
duality to hold in the abstract setting

@ Questions & Discussion

] January 23,2020 2/12



N
Signed Graphs: Abstract Case

@ Throughout, G = (V,E) is a connected combinatorial (undirected) graph. We assume no loops
or multiple edges, and denote adjacency with a tilde.

@ The oriented edge set of a graph G is given by

E°(G) := {(u,v), (v,u) : u,v € V(G),u ~ v}.

@ T will be used to denote a general group; its identity element denoted e. I' will act on a
Banach space X via a left action a.

© A signature on G is a map
0:E(G) > T:(1,0) - ou,
satisfying the property ooy = (040) .
@ A pair (G, 0) is called a signed graph.

@ If7:V — I'is some function and p is any signature, then we may produce the 7-switched
signature denoted p® via

PLy = T(UW)puot(@) . "

Two signatures related in this way are called switching equivalent.
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Some concrete examples

© A magnetic graph is a pair (H, p) where H is
a graph and p is a signature taking values in
the group Sli={zeC:|z|=1). @
@ The signature is this case is acting on C; in @
turn, functions V — C.
@ In the past, signature structures on these
types of graphs have served to discretely Figure: An example of a magnetic graph with +1
model magnetic fields or quantum signature.
mechanical systems [Lieb and Loss(1993)].
© A connection graph is a pair (F, w) where F
is a graph and w is a signature taking values
in the real orthogonal group O;(RR).

@ The signature is in this case is acting on R";
in turn, functions V — R".

@ These types of signatures have been used to
model 3D structures by synthesizing 2D
images of various faces of the structrues and Figure: The lift of the preceding magnetic graph.
the rotations which relate the perspectives Onmitted here, lifts can turn combinatorial properties of

from which the images were captured. a signature into structural and geometric properties of
the associated lift graph.
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Balanced signatures: Concrete case

Proposition

Let (H, p) be a magnetic graph. The following are equivalent:
@ For every oriented cycle expressed as a list of incident oriented edges in the form
(o, w1), (11, 112), ..., (1, 1y = 110)), it holds TT!2) puusy = 1.
@ p is switching equivalent to the trivial signature.

Proposition

Let (F, w) be a connection graph. Then the following are equivalent:
@ For every oriented cycle expressed as a list of incident oriented edges in the form
((uo, u1), (w1, u2),. .., (Uy—1, Uy = ug)), it holds H?:_Ol Wy, = Idy, the n X n identity matrix.

@ w is switching equivalent to the trivial signature, in the sense that there exists T : V. — O, (R) such
that

T ()" = Idy

foreach u ~ v.

@ Signatures which satisfy either of the preceding conditions are called balanced.
@ Question How do we generalize this notion to the general case where the signature takes
values in an arbitrary group?
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Balanced signatures: The abstract case

Theorem (Signature equivalence (a))

Let G = (V, E) be a connected simple graph, o a signature on G taking values in a group I', X a Banach
space, and « a left action of of I on X. Then the following are equivalent:

@ There exists a function f : V — X, not identically 0, such that for every oriented edge (u,v) € E(G),
it holds
fu) = a(ow)f (v).
@ There exists a nonzero element x € X and some ug € V such that for each directed cycle of the form
((uo, u1), (w1, u2), - -, (Un—2, tn-1), (Un-1,1n = up)) C E”(G)

it holds

n-1

i=0

@ The first condition generalizes the preceding notion of switching equivalence to the trivial
signature

@ The second condition generalizes the notion of trivial signature products along cycles; here,
the triviality is reflected by the stability of the element x under the action of the signature
product along the cycle.
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Terminology

@ Recalling the left action a of I on X, let X* be the continuous dual to X. We can define the
induced action a* on X" by the equation

(" (¥)) (¥) = P(a(x))
for each ¢ € X* and x € X. While not a true group action in some sense, we can work with it
in the same manner.

@ Having fixed a group, the 4-tuple (G, 0, a, X) is said to be balanced under the action of & on X
provided any (and hence all) of the preceding conditions hold.

© Having fixed a group, the 4-tuple (G, 0, @, X) is said to be *-balanced under the action of a* on
X* provided (G, 0, a", X") is balanced.
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Background: Classical Kantorovich Duality on Graphs

©Q Letup € V(G) be a fixed ‘base vertex.” We define the Lipschitz space and its norm:
Lipy(G):={f : V=R | fu) =0}, fllip = max|f(u) - £ (o)l

for each f € Lip,(G).
@ Separately, we define for each pair of adjacent vertices u ~ v the combinatorial atom
Myy : V(G) = R defined by
muv(x) = ]I{u] - ]I(v}~
© We define the Arens-Eells space to be
A(G) = Span]R{muv}u~v

equipped with the norm

1

g == inf{ Y lail | =) aim ).
i

Theorem (Kantorovich duality, 1940s)

The spaces A(G)* and Lip(G) are isometrically isomorphic. It holds for any two probability densities u,v
defined on the vertices of G,

Y. Fa(u —v)| | f € Lipg(©), iy < 1)

ueV(G)

Il = Vil = sup {
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N
Signed Lipschitz Space

Definition

The signed Lipschitz space is given by
Lip?(G; X):={f: V> X | AC = 0s.tl|f (u) — a(ow)f (V)lIx < C Yu ~ v}
equipped with the semi-norm

llLipe(6;x) = max|f (u) = a(ow)f (O)llx-

Lemma

If (G, 0,a, X) is not balanced, Lip° (G; X) will be a Banach space.
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N
Signed Arens-Eells Space

Definition

Letting a € X and 1, v € V be any adjacent vertices, we can define amj,, : V — X via

a fw=u
amly(w) = {~a(ow)a fw=v , YweV.
0 otherwise

along with the signed Arens-Eells space
E2(G; X) := {am, | uveV,u~v,aeX}
equipped with the norm defined by

n n
llm1ll o Gy = inf {leaillx | m= Zaimzivi, u~v,meX, 1<i< n}.
i=1 i=1

Lemma

If (G, 0,a, X) is not +-balanced, Z£° (G; X) = Lip°(G; X) as vector spaces.
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Abstract Kantorovich Duality

Theorem
If (G, 0, @, X) is not *-balanced, then we have the identification

ZE9(G; X)" = Lip”(G; X*).

Theorem

If (G, 0, a, X) is not balanced, then we have the identification

(G X) = Lip (G; X)'.

0 The punchline?

@ The Kantorvich duality we know and love on classical graphs (and
more generally, metric spaces) holds on signed graphs with a broad
degree of generality in the signature type and function spaces;
however, there is some subtlety in the requirements of the signature
to ensure the duality does indeed occur.
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Questions & Discussion
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