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Abstract. We consider Lipschitz- and Arens-Eells-type function spaces constructed for magnetic graphs,
which are adapted to this setting from the area of optimal transport on discrete spaces. After establishing
the duality between these spaces, we prove a characterization of the extreme points of the unit ball in the
magnetic Lipschitz space as well as a result identifying the magnetic Arens-Eells space as a quotient of the
classical Arens-Eells space of an associated classical graph called the lift graph.

1. Introduction

1.1. Background. Let G = (V (G), E(G)) be an undirected, finite graph without loops or multiple edges
(henceforth ‘simple’), and suppose one has two mass (probability) distributions µ, ν : V (G) → R. A
common question concerns how one may transport the mass distribution µ to the distribution ν in a
manner which is optimal with respect to certain quantities of interest like energy or cost. Such questions
constitute the research area of optimal transport on discrete domains [3, 12], a topic which has applications
in a number of applied areas such as computer graphics and image processing [7, 6, 9], geometry [11], and
physics [1]. One classical approach toward these problems is by way of Kantorovich duality, which in the
formulation presented here relates Lipschitz-type and Arens-Eells function spaces via duality.

One setting where discrete transport problems have, to this author’s knowledge, not been posed is
magnetic (or signed) graphs. These are essentially combinatorial graphs which have been equipped with
an additional structure known as a signature, which can be viewed as a discrete analogue of a magnetic
potential field [10]. These graphs have helped researchers model systems from discrete quantum mechanics
[10] and chemistry [4], to even social psychology [2]. In the classical theory of optimal transport on discrete
spaces, there happens to be a well-understood link between the cost of transport along paths and their
associated lengths. Interestingly, it appears as though one natural extension of this relationship to the
case of magnetic graphs appears to fail, which we will explore in the last section. This has complicated
the computation of quantities associated to magnetic transport processes.

In this paper, we will approach optimal transport through adapted Lipschitz- and Arens-Eells-type
function spaces designed for magnetic graphs. After some preliminary remarks, we will establish the
duality of these spaces using a form of representation in the manner of [13]. Then, we will prove a char-
acterization of the extreme points of the unit ball in our (magnetic) Lipschitz space. Finally, we will put
down a result concerning the central problem of computing the σ-Arens-Eells norm via a compression
mapping.

1.2. Graph theory preliminaries. Throughout, S1 = {z ∈ C : |z| = 1} is the unit circle, and S1
p =

{z ∈ C : zp = 1} is the abelian group of p-th roots of unity, where p ∈ N. All graphs considered here are
considered to be simple; that is, undirected, with a finite vertex set, no loops, and no multiple edges. If
u, v are vertices, adjacency is indicated u ∼ v. A graph is connected if there exists a path connecting any
two of the vertices in the graph.
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(a) 7-cycle, with signature
illustrated by the angular offset
of the blue arrows from the red

ones

(b) lift of the above cycle; this
graph is isomorphic to a cycle

on 28 vertices

Figure 1. A magnetic cycle
graph and its lift.

If X = (V (X), E(X)) is a simple graph, we define the oriented edges of
X to be the set Eor(X) :=

{
(u, v), (v, u) : {u, v} ∈ E(X)

}
.

A signature on X is a map σ : Eor(X) → S1 : (u, v) 7→ σuv, satisfying
σvu = σuv. A magnetic graph is a pair (X,σ). Throughout, (non)-magnetic
graphs will be denoted with an (‘G’) ‘X’ respectively. The trivial signature
is defined to be 1 on every oriented edge. A magnetic graph (X,σ) is called
balanced provided that the product of the values of the signature along any
(directed) cycle is 1; otherwise, X is unbalanced. If σ takes values in a finite
subgroup of S1 and τ : V (X)→ S1

p is some function, then we may produce
the τ -switched signature denoted στ via

(1) στuv := τ(u)σuvτ(v)−1.

Two distinct signatures related in this manner by some switching function
are called switching equivalent. A signature σ is balanced if and only if it
is switching equivalent to the trivial signature [8, Proposition 3.2].

Given a magnetic graph (X,σ) whose signature takes values in some
finite group S1

p we may construct a related non-magnetic graph called

the lift of X, denoted X̂, via vertex set V (X̂) = V (X) × S1
p, and with

the condition that two vertices (u, σ1), (v, σ2) are adjacent if and only if
u ∼ v in the original graph and σ2 = σ1σuv. The signature structure from
the original graph is thus encoded in the edge structure of the new one,
illustrated in Figure 1.

We will also have occasion to utilize the Hilbert space `2(V (X)) := {f :
V (X)→ C} with inner product structure given by

〈f, g〉`2 :=
∑

u∈V (X)

f(u)g(u).

Also, we will use the unit distributions δu ∈ `2(X) given by

δu(v) :=

{
0 v 6= u

1 v = u
.

1.3. Classical Kantorovich duality, extreme points. To complete
this preliminary section, let us recall some results pertaining to non-
magnetic graphs. If µ, ν are two mass distributions on the vertices of a con-
nected graph G equipped with shortest-path metric d, we consider transport plans γ : V (G)×V (G)→ R≥0

which are mass distributions on the Cartesian product of the vertex set whose marginals agree with µ and
ν, and such that γ(u, v) represents the amount of mass transported from vertex u to vertex v. Γ(µ, ν)
represents the set of all transport plans between µ and ν. The 1-Wasserstein distance between µ, ν is
then given by

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∑
u,v

γ(u, v)d(u, v).

If one chooses an arbitrary but fixed base vertex, say u0 ∈ V (G), one can define the normed space

Lip0(G) :=
{
f : V (G)→ R

∣∣ f(u0) = 0
}

where

(2) ||f ||Lip = max
u∼v
|f(u)− f(v)|.
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Similarly, for each pair of vertices u, v ∈ V (G) we may define the combinatorial atom muv : V (G) → R
defined by

muv(w) =


1 w = u

−1 w = v

0 otherwise

for each w ∈ V (G).

Subsequently, we may construct the Arens-Eells space via

Æ(G) := spanR{muv

∣∣ u, v ∈ V (G), u ∼ v}
equipped with the norm

||m||Æ := inf
{ n∑
i=1

|ai|
∣∣m =

n∑
i=1

aimuivi , {ai}i ⊂ R, ui ∼ vi
}
.

Viewing Æ(G) and Lip0(G) as subspaces of the Hilbert space `2(G), one can prove via Riesz representation
that Æ(G) is isometrically isomorphic to Lip0(G)∗, e.g. [13, Theorem 2.2.2]. This is the so-called (classical)
Kantorovich duality to which we dedicate a good part of the sequel.

2. Duality and extreme points

2.1. Arens-Eells, signed Lipschitz spaces. Let (X,σ) be a magnetic graph, endowed with usual
shortest-path metric d. We define the signed Lipschitz function space

Lipσ(X) := {f : V (X)→ C
∣∣ ∃ C ≥ 0 s.t. |f(u)− σuvf(v)| ≤ C for each u ∼ v}

This definition leads to a natural choice of σ-Lipschitz norm, which we pair with an equivalent formulation.
For each f ∈ Lipσ(X), set

||f ||Lipσ := inf{C ≥ 0
∣∣ |f(u)− σuvf(v)| ≤ C for each u ∼ v}

= max
u∼v
|f(u)− σuvf(v)|.(3)

Lemma 2.1.1. Let (X,σ) be an unbalanced magnetic graph. Then ||·||Lipσ is a norm.

Proof. Let f, g ∈ Lipσ(X) and α ∈ C. Clearly ||·||Lipσ ≥ 0, and ||αf ||Lipσ = |α|||f ||Lipσ from the definition.
The triangle inequality is obtained as follows:

||f + g||Lipσ = max
u∼v
|(f + g)(u)− σuv(f + g)(v)| ≤ max

u∼v
|f(u)− σuvf(v)|+ |g(u)− σuvg(v)|

= max
u∼v
|f(u)− σuvf(v)|+ max

u∼v
|g(u)− σuvg(v)| = ||f ||Lipσ + ||g||Lipσ .

For definiteness, let us assume that ||f ||Lipσ = 0. The max formulation in equation (3) would imply that
for each pair of adjacent vertices u, v one has f(u) = σuvf(v), forcing either f ≡ 0 or f = λfp, where

|λ| > 0, |fp| ≡ 1, and fp is a switching function for each of the connected components of (X,σ), such

that σfp ≡ 1 as in equation (1). The latter case contradicts the assumption that (X,σ) is unbalanced so
f ≡ 0. �

In the case where (X,σ) is a balanced graph, ||·||Lipσ is a semi-norm since its definiteness cannot be
assured. Let us now consider two adjacent vertices u, v ∈ V (X) and define the magnetic atom mσ

uv :
V (X)→ C as follows:

mσ
uv(w) :=

{
1 w = u
−σuv w = v

0 otherwise
.

We define the magnetic Arens-Eells space

Æσ(X) := spanC{mσ
uv

∣∣ u, v ∈ V (X), u ∼ v}.
Elements of this space will be called magnetic molecules. We will use the next lemma to verify that
Æσ(X) indeed recovers all of `2(X) under the right condition.

Lemma 2.1.2. Let (X,σ) be an unbalanced magnetic graph. Then Æσ(X) = `2(X).
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Proof. We will prove this lemma by showing that the orthogonal complement of Æσ(X) in `2(X) is merely
{0}. Let f ∈ `2(X) be such that 〈f,m〉`2 = 0 for each m ∈ Æσ(X). In particular, for each pair of adjacent
vertices u, v ∈ V (X) one has 〈f,mσ

uv〉`2 = 0. Explicitly, this means f(u) = σuvf(v) forcing either f ≡ 0
or f = λfp, where |λ| > 0 and |fp| ≡ 1 is a switching function for each of the connected components of

(X,σ), such that σfp ≡ 1 as in equation (1). The latter case contradicts the assumption that (X,σ) is
unbalanced so f ≡ 0. �

We define for each molecule m ∈ Æσ(X) the norm

||m||Æσ := inf

{ n∑
i=1

|ai|
∣∣m =

n∑
i=1

aim
σ
uivi , {ai}i ⊂ C, ui ∼ vi ∈ V (X)

}
.

Let us quickly check that this is actually a norm as claimed.

Lemma 2.1.3. Let (X,σ) be an unbalanced magnetic graph. Then ||·||Æσ is a norm.

Proof. The positivity, homogeneity, and triangle inequality for this norm are all easily checked. We only
need argue for why ||·||Æσ is in fact definite. Suppose for some molecule one has ||m||Æσ = 0. For positive
integer k, find some finite linear combination of atoms

∑
i a
k
im

σ
uki v

k
i

for which

m =
∑
i

akim
σ
uki v

k
i
,
∑
i

|aki | <
1

k
.

Then,

||m||`2 = ||
∑
i

akim
σ
uki v

k
i
||`2 ≤

∑
i

|aki |||mσ
uki v

k
i
||`2 ≤ 2

∑
i

|aki | <
2

k
→ 0 as k →∞.

From the definiteness of the ||·||`2 norm, the claim is verified. �

We have constructed two Banach function spaces for unbalanced magnetic graphs, Lipσ(X) and Æσ(X)
(we verified their structures as normed spaces, completeness follows from their finite dimension). In
Theorem 2.1, we identify them as dual to one another.

2.2. Duality. We will now adapt the classical duality result mentioned in the preliminary discussion to
the function spaces designed for magnetic graphs. The argument is in the manner of Weaver [13].

Theorem 2.1. Let (X,σ) be an unbalanced magnetic graph. Then Æσ(X)∗ is isometrically isomorphic
to Lipσ(X).

Proof. Let us define a linear mapping T1 : Æσ(X)∗ → Lipσ(X) in the following manner. Let M ∈ Æσ(X)∗,
and notice that since Æσ(X) = `2(X) as finite dimensional vector spaces, M may be viewed as a continuous
linear functional on `2(X). In turn, by using the finite-dimensional Riesz representation theorem on the
space `2(X), we may obtain a representative function fM ∈ `2(X) so that for each m ∈ Æσ(X), one has
M(m) = 〈fM ,m〉`2 . Put T1(M) = fM . Notice that for each pair of adjacent vertices u, v ∈ V (X) we have

|fM (u)− σuvfM (v)| = |〈fM ,mσ
vu〉`2 |

= |M(mσ
vu)| ≤ ||M ||Æσ∗ ||mσ

vu||Æσ ≤ ||M ||Æσ∗ .

In turn, by taking a max,

||fM ||Lipσ = max
u∼v
|fM (u)− σuvfM (v)| ≤ ||M ||Æσ∗

which implies that T1 is a nonexpansive operator. As a note, the linearity of T1 is inherited from the
Riesz Representation. Let us now suggestively define a mapping

T2 : Lipσ(X)→ Æσ(X)∗ : f 7→Mf ,
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where for each m ∈ Æσ(X) we set Mf (m) = 〈f,m〉`2 . We verify that given any m ∈ Æσ(X), realized as
a finite linear combination

∑
i aim

σ
uivi , it holds that

|Mf (m)| = |〈f,m〉`2 | =
∣∣〈f,∑

i

aimσ
uivi〉`2

∣∣
≤
∑
i

|ai| · |〈f,mσ
uivi〉`2 | =

∑
i

|ai| · |f(u)− σuvf(v)|

≤ ||f ||Lipσ ·
∑
i

|ai|.

By taking an inf over all possible representatons ofm, we obtain the inequality |Mf (m)| ≤ ||f ||Lipσ ·||m||Æσ ,
which implies ||Mf ||Æσ(X)∗ ≤ ||f ||Lipσ , showing that T2 is a non-expansive linear operator as well. The
composition T2T1 : Æσ(X)∗ → Æσ(X)∗ is easily checked to be the identity mapping. Since the mapping
T1 and its inverse are nonexpansive and invertible, T1 is a vector space isomorphism and an isometry of
Banach spaces, finalizing the claim. �

2.3. Extreme points. Some contextual remarks are in order before presenting the result.

Definition 2.3.1. Let (W, ||·||W ) be a normed space, and suppose f ∈ W , with ||f ||W ≤ 1. Then f is
called an extreme point of the unit ball in W , denoted BW , provided that for any g ∈W , if{

f + tg
∣∣ t ∈ [−1, 1]

}
⊂ BW ,

then g = 0.

We note that this definition of extremity is equivalent to the more classical interpretation, which defines
points in the unit ball to be extreme if they cannot be expressed as the midpoint of two other, distinct
elements of the unit ball.

Definition 2.3.2. Let G be simple graph and f ∈ Lip0(G) be an element of the unit ball of Lip0(G),
denoted BLip. We say an edge {u, v} ∈ E(X) is satisfied by f if

|f(u)− f(v)| = 1.

Farmer [5, Theorem 1] proves an equivalent version of the following result.

Theorem 2.2 (Farmer 1994). Let G be a connected simple graph and f ∈ BLip. Then f is an extreme
point of BLip if and only if the graph Hf , constructed with vertex set V (G) and edge set

E(Hf ) :=
{
{u, v} ∈ E(G)

∣∣ {u, v} is satisfied by f
}

is connected.

We present an analogue of this result to the function spaces designed for magnetic graphs. First, one
preliminary definition in the spirit of the preceding remarks.

Definition 2.3.3. Let (X,σ) be an unbalanced magnetic graph, and suppose f ∈ Lipσ(X) is in the unit
ball of Lipσ(X), denoted BLipσ . We say an edge {u, v} ∈ E(X) is σ-satisfied by f if

|f(u)− σuvf(v)| = 1.

Note as before that the quantity |f(u) − σuvf(v)| does not depend on the choice of orientation of the
edge being evaluated, i.e. |f(u)− σuvf(v)| = | − σvuf(u) + f(v)|.

Theorem 2.3. Let (X,σ) be an unbalanced graph, and f ∈ BLipσ . Then f is an extreme point of BLipσ

if and only if the magnetic graph Hf defined by the vertex set V (X), the edge set

E(Hf ) :=
{
{u, v} ∈ E(X)

∣∣ {u, v} is σ-satisfied by f
}
,

and which we equip with the restriction of the signature structure σ as on X, is unbalanced on each of its
connected components.
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Proof. Let us begin with the converse by supposing that Hf is unbalanced on each of its connected
components, and that some g ∈ Lipσ(X) satisfies{

f + tg
∣∣ t ∈ [−1, 1]

}
⊂ BLipσ .

This implies that for every edge {u, v} ∈ E(X) σ-satisfied by f , it holds for every t ∈ [−1, 1]

|f(u)− σuvf(v) + t (g(u)− σuvg(v)) | ≤ 1.

Knowing that |f(u)−σuvf(v)| = 1, and that 1 is an extreme point of the unit ball in C, the only way that
the inequality above can hold for every t ∈ [−1, 1] is if |g(u)− σuvg(v)| = 0 at every σ-satisfied edge; that
is, g(u) = σuvg(v). As we have seen before, this would imply that on each connected component of Hf ,
g must be either identically 0 or a scalar multiple of a switching function for σ associated to the trivial
signature. Since the latter implication contradicts our assumption that (Hf , σ) is unbalanced on each of
these connected components, it must hold that g ≡ 0, implying that f is an extreme point for BLipσ .

Next, let us assume that (Hf , σ) has some balanced connected component; that is, there exists A ⊂
V (X) such that the subgraph induced by A and the existing satisfied edges between its vertices E(A),
and with the signature σ restricted to its oriented edges Eor(A), is balanced. We claim that f cannot be
an extreme point. Since A is balanced, there exists a function h : A → S1 such that for each oriented
edge (u, v) ∈ Eor(A), h(u) = σuvh(v). We note that E(Hf ) need not contain every edge in the original
graph, so let us identify

ε := max
{
|f(u)− σuvf(v)|

∣∣ {u, v} ∈ E(X), |f(u)− σuvf(v)| < 1
}
< 1.

If this set happens to be empty, choose ε := 0. Define the nonzero function g ∈ Lipσ(X) by

g(x) :=

{
1−ε

2 h(x) if x ∈ A
0 if x /∈ A

for each x ∈ V (X). Let us check that {f + tg
∣∣ t ∈ [−1, 1]} ⊂ BLipσ . If {u, v} ∈ E(X), then one of three

possible cases holds: (i) both u ∈ A and v ∈ A; (ii) both u /∈ A and v /∈ A; (iii) or u ∈ A and v /∈ A. For
either of the first two cases, it holds

|f(u)− σuvf(v) + t (g(u)− σuvg(v)) | ≤ |f(u)− σuvf(v)|+ |t| · |g(u)− σuvg(v)|
≤ |f(u)− σuvf(v)|+ |g(u)− σuvg(v)| ≤ 1 + 0 = 1.

Notice that in these two cases, |g(u)−σuvg(v)| = 0 since either g(u) = σuvg(v) (case (i)), or g(u) = g(v) = 0
(case (ii)). In the third case, that is when u ∈ A and v /∈ A, it holds |g(u) − σuvg(v)| = 1−ε

2 < 1 by
definition. In turn,

|f(u)− σuvf(v) + t (g(u)− σuvg(v)) | = |f(u)− σuvf(v)|+ |t||g(u)− σuvg(v)|

≤ |f(u)− σuvf(v)|+ |g(u)− σuvg(v)| ≤ ε+
1− ε

2
< ε+ 1− ε = 1.

and the claim holds. This completes the proof. �

3. Compression

The final result we will present concerns an approach into the computation of the norm ||·||Lipσ . We
wish to say something about how the magnetic transport norm for molecules on the original magnetic
graph may be related to the classical transport norm for molecules on the lift graph. First we need a way
of translating between spaces.

Definition 3.0.1. Let (X,σ) be a magnetic graph, and assume σ takes values in S1
p for some integer

p ≥ 1. We define the linear compression mapping

C : Æ(X̂)→ Æσ(X)
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as follows: for each m ∈ Æ(X̂), u ∈ V (X), put

(Cm)(u) =
∑
ξ∈S1

p

ξm(u, ξ).

Theorem 3.1. Let (X,σ) be a magnetic graph, and assume σ takes values in S1
p for some integer p ≥ 1.

Then C is a surjective contraction from Æ(X̂) onto Æσ(X).

Proof. First, let us verify the surjectivity of the mapping C. Suppose we take some mσ ∈ Æσ(X), which
we represent with a finite linear combination of magnetic atoms in the form

mσ =

n∑
i=1

aim
σ
uivi .

By choosing m∗ ∈ Æ(X̂) to be

m∗ =
n∑
i=1

aim(ui,1),(viσuivi )
,

we may compute

(Cm∗)(u) =
∑
ξ∈S1

p

m∗(u, ξ) =
∑
ξ∈S1

p

n∑
i=1

aim(ui,1),(viσuivi )
(u, ξ)

=

n∑
i=1

aiδui(u)− σuiviδvi(u) =

n∑
i=1

aim
σ
uivi(u) = mσ(u)

which verifies the onto claim; notice that from this computation, we obtain the general relation that for
each adjacent pair of vertices (u, ω), (v, ωσuv) in the lift, we have

(4) C(m(u,ω),(v,ωσuv)) = ωmσ
uv.

Now let m ∈ Æ(X̂) be given, and suppose we represent it by a linear combination of atoms in the form

m =

m∑
`=1

b`m(u`,ω`),(v`,ω`σu`v` )
.

In turn, from (4), one has

Cm =

m∑
`=1

b`ω`m
σ
u`v`

.

Applying inequalities, we see

||Cm||Æσ ≤
m∑
`=1

|b`ω`| =
m∑
`=1

|b`|

which, after taking an inf over all such representations of m, implies that C is a contraction. �

As a simple corollary to the preceding theorem, we have the following equation.

Corollary 3.0.1. Let mσ ∈ Æσ(X). We have the equation

||mσ||Æσ = min
{
||m||Æ

∣∣m ∈ Æ(X̂); Cm = mσ
}
.

Proof. Knowing that C is surjective, the set on the right is nonempty; and, knowing also that C is a
contraction, we may write

||mσ||Æσ ≤ inf
{
||m||Æ : m ∈ Æ(X̂); Cm = mσ

}
.
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By checking that the norm ||mσ||Æσ is attained in the set somewhere we will verify the reverse inequality
and justify the use of a min in the equation. To this end, fix some mσ ∈ Æσ(X), and realize it as an
optimal linear combination of magnetic atoms, i.e.

mσ =

n∑
i=1

aim
σ
uivi , where ||mσ|| =

n∑
i=1

|ai|.

Note that such a linear combination of molecules exists by a compactness argument. Notice that, as in

the preceding proof, the molecule m∗ ∈ Æ(X̂) given by

m∗ =
n∑
i=1

aim(ui,1),(viσuivi )

satisfies Cm∗ = mσ. Since the expression above is one realization of m∗ as a linear combination of (non-
magnetic) atoms, it holds that ||m∗||Æ ≤

∑
i |ai| = ||mσ||Æσ . Moreover, since Cm∗ = mσ and C is a

contraction, it holds that ||mσ||Æσ ≤ ||m∗||Æ. Putting the two inequalities together, i.e.

||m∗||Æ ≤
∑
i

|ai| = ||mσ||Æσ ≤ ||m∗||Æ

we find ||m∗||Æ = ||mσ||Æσ as desired. This completes the proof. �

The author had hoped to improve this result via a conjecture concerning the link of simple magnetic
molecules defined on the original graph to associated ones on the lift. We can define magnetic path
molecules to take the value 1 at some initial vertex (say ‘x’), and at some terminal vertex (say ‘y’), it
takes the value of the negative of the product of the signature values along a path between the initial
vertex and terminal vertex (say ‘−σ’). Based on the classical case, it would be natural to guess that the
norm of a magnetic path molecule would coincide with the length of a path on the lift initiating at (x, 1)
and terminating at (y, σ). This supposes the stability of the strong relationship between the norm of
path-type molecules and their lengths in the classical case as it is adapted to the magnetic case.

As we briefly mentioned in the introduction, such a conjecture does indeed fail. Consider the following
counterexample, illustrated in Figure 2. The graph is on three vertices, with the signature taking the
value 1 on the upper two edges and the value

√
−1 along the oriented edge (u, v). Let us define the

molecule m ∈ Æσ(X) via

m(x) =


1 x = u

1 x = v

0 otherwise

.

In light of the conjecture, one can view m as a magnetic path molecule corresponding to the path initiating
at u, going around the graph counterclockwise once and terminating at v (this is based on the values
of the function at u and v). The simplicity of the graph structure works to our advantage in the sense

Figure 2. Counterexample graph.

that any element in the space Æσ(X) has a unique representation in the basis {mσ
uv,m

σ
vw,m

σ
wu}. A quick

calculation yields
m = (1 +

√
−1)mσ

uv +mσ
vw −mσ

wu

forcing ||m||Æσ = 2 +
√

2, a non-integer quantity which invalidates the conjecture.
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