Kantorovich Duality \& Optimal Transport Problems on Magnetic Graphs

Magnetic Graphs \& Lifts

A combinatorial graph $G=(V(G), E(G))$ is called simple if its vertex set is finite and its edge set contains no loops or multiple edges. A graph is called connected if there is at least one path connecting any two vertices. Throughout, we consider simple, connected graphs. If two vertices $u, v \in V$ are adjacent, we write $u \sim v$.

$\underline{\text { Signatures }}$

The oriented edge set of a graph G is given by

$$
E^{\circ r}(G):=\{(u, v),(v, u): u, v \in V(G), u \sim v\} .
$$

signature on a graph is a map

$$
\sigma: E^{\circ \mathrm{r}}(G) \rightarrow \mathbf{S}^{1}:(u, v) \mapsto \sigma_{u v}
$$

satisfying the property $\sigma_{v u}=\overline{\sigma_{u v}}$. A pair (G, σ)iscalledamagnetic graph.

(a) 7-vertex cycle graph, with complex-valued The edges with positive signature. $e^{i \pi}$ illustrated signature are in blue, those the angular offset of the with negative signature are blue arrow from the red in red. edges. edges.

What is optimal transport on graphs?

Let $G=(V(G), E(G))$ be a simple connected graph equipped with the shortest path metric d. Suppose one has two mass (probability) distributions define on the vertices of a graph, say $v, \mu: V(G) \rightarrow \mathbb{R}$, then we may consider the question of how one can transport the mass μ to the mass v. This is formalzed with the notion of a transport plan γ, a non-negative function which quantifies the amount of mass moved from vertex u to vertex $v . \Gamma(\mu, \nu)$ is the set of all admissible μ, ν-transport plans γ. Then the transport cost of μ and v with respect to the metric d (Or the 1 -Wasserstein metric) may be formulated:

$$
\begin{equation*}
W_{1}(\mu, v)=\inf _{r \in\ulcorner(\mu, v)} \sum_{u \in V(G)} \sum_{v \in V(G)} d(u, v) r(u, v) . \tag{1}
\end{equation*}
$$

Optimal transport on graphs is the study of this quantity, others like it, and the transport plans which attain them.
et $u_{0} \in V(G)$ be a fixed 'base vertex.' We define the Lipschitz space and its norm:

$$
\operatorname{Lip}_{0}(G):=\left\{f: v \rightarrow \mathbb{R} \mid f\left(u_{0}\right)=0\right\}, \quad\|f\|_{\text {Lip }}=\max _{u \sim v}|f(u)-f(v)|
$$

for each $f \in \operatorname{Lip}_{\circ}(G)$. If $f \in \operatorname{Lip}_{o}(G)$ with $\|f\|_{\text {Lip }} \leq 1$, then f is called an extreme point of the unit ball in $\operatorname{Lip}_{\circ}(G)$ (denoted $B_{\text {Lip }}$) provided that for any $g \in$ Lip (G), if it holds that

$$
\{f+t g \mid t \in[-1,1]\} \subset B_{\text {Lip }}
$$

then $g \equiv 0$. If $\{u, v\} \in E(G)$, we say that $\{u, v\}$ is satisfied by f provided $f(u)-f(v) \mid=1$.

Classical convex extreme points.

Let $G=(V(G), E(G))$ be a connected simple graph, and $f \in B_{\text {Lip }} \subset$
Lip ${ }_{0}(G)$. Consider the subgraph H_{f} in G formed by $V\left(H_{f}\right)=V(G)$, and
$E\left(H_{f}\right):=\{\{u, v\} \in E(G) \mid\{u, v\}$ is satisfied by $f\}$
Then f is an extreme point of $B_{\text {Lip }}$ if and only if H_{f} is connected.
Separately, we define for each pair of adjacent vertices $u \sim v$ the combina torial atom $m_{u v}: V(G) \rightarrow \mathbb{R}$ defined by

$$
m_{u v}(x):=\mathbb{1}_{\{u\}}-\mathbb{1}_{\{v\}}
$$

We define the Arens-Eells space to be

$$
\mathbb{F}(G):=\operatorname{span}_{\mathbb{R}}\left\{m_{u v}\right\} u \sim v
$$

equipped with the norm

$$
\|m\|_{\mathcal{E}}:=\inf \left\{\sum\left|a_{i}\right| \mid m=\sum a_{i} m_{u_{i} v_{i}}\right\} .
$$

Classical Kantorovich Duality on Graphs.

The spaces $\notin(G)^{*}$ and $\operatorname{Lip}_{0}(G)$ are isometrically isomorphic. It holds

$$
W_{1}(\mu, v)=\sup \left\{\left|\sum_{u \in V(G)} f(u)(\mu(u)-v(u))\right| \mid f \in \operatorname{Lip}_{o}(G),\|f\|_{\text {Lip }} \leq 1\right\}
$$

$=\|\mu-\nu\|_{E}$

Open Questions

(1) How can we further describe $\|\cdot\| \|_{\epsilon^{\circ}}$ in terms of the norm $\|\cdot\|_{\epsilon}$ using the compression mapping?
(2) How can magnetic transport be interpreted as a physical process?

Notation

V^{*} algebraic dual space
 z complex conjugate
 $\mathbf{S}^{1}:=\{z \in \mathbb{C}:|z|=1\}$
 G simple connected graph
 $\mathbf{S}_{p} \quad p$-th roots of unity

 Results

 Results}

In the case of a simple magnetic graph (G, σ), we may consider two new normed spaces. The σ-Lipschitz space Lip ${ }^{\circ}(G)$ and its norm are defined by

$$
\operatorname{Lip}^{\sigma}(G):=\{f: V(G) \rightarrow \mathbb{C}\}, \quad\|f\|_{L_{i p}}=\max _{u \sim v}\left|f(u)-\sigma_{u v} f(v)\right| .
$$

If $f \in \operatorname{Lip}^{\sigma}(G)$ with $\|f\|_{\mathrm{Lip}^{\sigma}} \leq 1$, then f is called an extreme point of the unit ball in $\operatorname{Lip}^{\sigma}(G)$ (denoted $B_{\mathrm{Lip}^{\sigma}}$) provided that for any $g \in \operatorname{Lip}^{\sigma}(G)$, if it holds that

$$
\{f+\operatorname{tg} \mid t \in[-1,1]\} \subset B_{\mathrm{Lip}^{\sigma}},
$$

then $g \equiv 0$. If $\{u, v\} \in E(G)$, we say that $\{u, v\}$ is σ-satisfiedbyfprovided $\mid f(u)$ $\sigma_{u v} f(v) \mid=1$.

Convex extreme points.

Let (G, σ) be an unbalanced graph, and $f \in B_{\text {Lip }^{\sigma}}$. Then f is an extreme point of $B_{\text {Lip }}$ if and only if the magnetic graph H_{f} defined by the vertex set $V(G)$, the edge se

$$
E\left(H_{f}\right):=\{\{u, v\} \in E(G) \mid\{u, v\} \text { is } \sigma \text {-satisfied by } f\},
$$

and which we equip with the same signature structure σ as on G, is unbalanced on each of its connected components

Similarly, we may define a magnetic atom for every pair of adjacent vertices u, v, and the σ-Arens-Eells space to be
$m_{u v}^{\sigma}(x):=\mathbb{1}_{\{u\}}-\sigma_{u v} \mathbb{1}_{\{v\}}, \quad F^{\sigma}(G):=\operatorname{span}_{\mathbb{C}}\left\{m_{u v}^{\sigma}\right\} u \sim v$
equipped with the norm

$$
\|m\|_{E^{\sigma}}:=\inf \left\{\sum_{i}\left|a_{i}\right| \mid m=\sum_{i} a_{i} m_{u ; i_{i}}^{\sigma}\right\} .
$$

Kantorovich duality.

For an unbalanced, simple magnetic graph (G, σ) the spaces $\Vdash^{\sigma}(X$ and $\mathrm{Lip}^{\sigma}(X)^{*}$ are isometrically isomorphic

Compression Transformation

We define the linear compression mapping $C: \AA(\widehat{G}) \rightarrow \mathbb{E}^{\sigma}(G)$ by setting, for each $m \in \mathbb{E}(G), u \in V(G)$,

$$
(C m)(u)=\sum_{\xi \in \mathbf{S}_{p}^{\prime}} \xi m(u, \xi) .
$$

C is in fact a surjective contraction onto the space $\digamma^{\sigma}(G)$. We have the equation

$$
\left\|m^{\sigma}\right\|_{\mathbb{K}^{\sigma}}=\min \left\{\|m\|_{\mathscr{E}} \mid m \in \mathbb{E}(\widehat{X}) ; C m=m^{\sigma}\right\}
$$

for each $m \in \AA^{\sigma}(G)$.

References

1] Solomon, Justin (2018). "Optimal Transport on Discrete Domains." Notes for AMS Short Course on Discrete Differential Geometry, San Diego.
2] Weaver, Nik (1999). "Lipschitz algebras." World Scientific, River Edge, N.J.

