Kantorovich Duality & Optimal Transport Problems on Magnetic Graphs

Magnetic Graphs & Lifts

A combinatorial graph G = (V(G), E(G)) is called **simple** if its vertex set is finite and its edge set contains no loops or multiple edges. A graph is called **connected** if there is at least one path connecting any two vertices. Throughout, we consider simple, connected graphs. If two vertices $u, v \in V$ are adjacent, we write $u \sim v$.

Signatures

The **oriented edge set** of a graph G is given by

$$E^{0}(G) := \{ (U, V), (V, U) : U, V \in V(G), U \sim V \}.$$

A **signature** on a graph is a map

 $\sigma: E^{\mathrm{or}}(G) \to \mathbf{S}^1: (U, V) \mapsto \sigma_{UV},$

satisfying the property $\sigma_{vu} = \overline{\sigma_{uv}}$. A pair (G, σ)iscalled amagnetic graph.

(a) 7-vertex cycle graph,

The edges with positive

in red.

with real-valued signature.

(b) 7-vertex cycle graph with complex-valued signature. All edges have signature are in blue, those the angular offset of the with negative signature are blue arrow from the red edges.

(c) 8-vertex cycle graph with complex-valued signature. All edges have signature $e^{\frac{l\pi}{2}}$, illustrated by signature $e^{\frac{l\pi}{2}}$, illustrated by the angular offset of the blue arrow from the red edges.

Figure: Three magnetic cycle graphs. Examples (a) and (b) are unbalanced, and (c) is balanced.

A magnetic graph (G, σ) is **balanced** if the product of the signature values along any cycle is 1; otherwise, a magnetic graph is called **unbalanced**.

Magnetic lift graphs

If (G, σ) is a magnetic graph and σ takes values in a finite subgroup $\mathbf{S}_{p}^{1} \leq \mathbf{S}^{1}$, we may construct a **magnetic lift graph** \widehat{G} via the vertex set $V(\widehat{G}) := V(\widehat{G}) \times \mathbf{S}_{p}^{1}$ with two vertices (u, ω_1) , (v, ω_2) adjacent if and only if $u \sim v$ and $\omega_2 = \omega_1 \sigma_{uv}$.

(a) Lift of the graph in (a) above. The lower and upper levels correspond to the signature values of +1 and -1 resp.

(c) Lift of graph (c) above, notice the disconnectedness of the graph.

(d) Lift of graph (c) above with one cycle highlighted.

Balanced magnetic graphs always have disconnected lift graphs; unbalanced magnetic graphs usually have connected lift graphs.

Sawyer Jack Robertson

The University of Oklahoma

Let G = (V(G), E(G)) be a simple connected graph equipped with the shortestpath metric d. Suppose one has two mass (probability) distributions defined on the vertices of a graph, say $v, \mu : V(G) \to \mathbb{R}$, then we may consider the question of how one can transport the mass μ to the mass v. This is formalized with the notion of a **transport plan** γ , a non-negative function which quantifies the amount of mass moved from vertex u to vertex v. $\Gamma(\mu, v)$ is the set of all admissible μ, ν -transport plans γ . Then the **transport cost** of μ and v with respect to the metric d (Or the 1-Wasserstein metric) may be formulated:

 $W_1(\mu, \nu) = \inf_{\gamma \in \Gamma(\mu, \nu)} \sum_{\mu \in V(G)} \sum_{\nu \in V(G)} \sum$

Optimal transport on graphs is the study of this quantity, others like it, and

the transport plans which attain them. Let $u_0 \in V(G)$ be a fixed 'base vertex.' We define the **Lipschitz space** and its norm:

$$\operatorname{Lip}_{O}(G) := \{ f : V \to \mathbb{R} \mid f(u_{O}) = O \},\$$

for each $f \in \text{Lip}_{O}(G)$. If $f \in \text{Lip}_{O}(G)$ with $||f||_{\text{Lip}} \leq 1$, then f is called an **extreme point** of the unit ball in Lip_o(G) (denoted B_{Lip}) provided that for any $g \in$ $Lip_{O}(G)$, if it holds that

 $\{f + tg \mid t \in [-1, 1]\} \subset B_{\text{Lip}},$ then $g \equiv 0$. If $\{u, v\} \in E(G)$, we say that $\{u, v\}$ is **satisfied** by f provided

Classical convex extreme points.

Let G = (V(G), E(G)) be a connected simple graph, and $f \in B_{Lip} \subset Lip_{O}(G)$. Consider the subgraph H_{f} in G formed by $V(H_{f}) = V(G)$, and $E(H_f) := \{ \{u, v\} \in E(G) \mid \{u, v\} \text{ is satisfied by } f \}.$ Then f is an extreme point of B_{Lip} if and only if H_f is connected.

Separately, we define for each pair of adjacent vertices $u \sim v$ the **combinatorial atom** m_{uv} : $V(G) \rightarrow \mathbb{R}$ defined by

 $m_{uv}(x) := \mathbb{1}_{\{u\}} - \mathbb{1}_{\{v\}}$

We define the **Arens-Eells space** to be $\mathcal{A}(G) := \operatorname{span}_{\mathbb{R}} \{ m_{uv} \}_{u \sim v}$

equipped with the norm

 $|f(\mathbf{U}) - f(\mathbf{V})| = 1.$

 $||m||_{\mathcal{R}} := \inf \left\{ \sum |a_i| \mid m \right\}$

Classical Kantorovich Duality on Graphs. The spaces $\mathcal{R}(G)^*$ and $\operatorname{Lip}_{O}(G)$ are isometrically isomorphic. It holds $W_{1}(\mu, \nu) = \sup \left\{ \left| \sum_{u \in V(G)} f(u)(\mu(u) - \nu(u)) \right| \ | \ f \in \operatorname{Lip}_{O}(G), ||f||_{\operatorname{Lip}} \leq 1 \right\}$ $= ||\mu - \nu||_{\mathcal{F}}$

Open Questions

(1) How can we further describe $||\cdot||_{A^{\sigma}}$ in terms of the norm $||\cdot||_{\mathcal{R}}$ using the compression mapping? (2) How can magnetic transport be interpreted as a physical process?

What is optimal transport on graphs?

$$\int_{G} d(u,v)\gamma(u,v).$$
 (1)

 $||f||_{\text{Lip}} = \max_{u \in V} |f(u) - f(v)|$

$$\mathbf{n} = \sum_{i} a_{i} m_{u_{i} v_{i}} \Big\}.$$

- •V* algebraic dual space
- $\cdot \overline{z}$ complex conjugate
- G simple connected graph

In the case of a simple magnetic graph (G, σ) , we may consider two new normed spaces. The σ -**Lipschitz** space Lip^{σ}(G) and its norm are defined by $\operatorname{Lip}^{\sigma}(G) := \{ f : V(G) \to \mathbb{C} \}, \quad ||f||_{\operatorname{Lip}^{\sigma}} = \max_{u \sim v} |f(u) - \sigma_{uv} f(v)|.$

If $f \in \text{Lip}^{\sigma}(G)$ with $||f||_{\text{Lip}^{\sigma}} \leq 1$, then f is called an **extreme point** of the unit ball in Lip^{σ}(G) (denoted $B_{Lip^{\sigma}}$) provided that for any $g \in Lip^{\sigma}(G)$, if it holds that

$${f + }$$

then $g \equiv 0$. If $\{u, v\} \in E(G)$, we say that $\{u, v\}$ is σ – **satisfied** by fprovided | f(u)- $\sigma_{\rm UV}f({\rm V})|=1.$

Let (G, σ) be an unbalanced graph, and $f \in B_{Lip^{\sigma}}$. Then f is an extreme point of $B_{\text{Lip}^{\sigma}}$ if and only if the magnetic graph H_f defined by the vertex set V(G), the edge set

$$E(H_f) := \{\{U, V\}\}$$

Similarly, we may define a **magnetic atom** for every pair of adjacent vertices $u, v, and the \sigma$ -Arens-Eells space to be

 $m_{uv}^{\sigma}(\mathbf{X}) := \mathbb{1}_{\{u\}} - \sigma_{uv} \mathbb{1}_{\{v\}}, \quad \mathcal{A}^{\sigma}(G) := \operatorname{span}_{\mathbb{C}} \{m_{uv}^{\sigma}\}_{u \sim v}$

equipped with the norm

 $||m||_{\mathcal{R}^{\sigma}} := i$

and $\operatorname{Lip}^{\sigma}(X)^*$ are isometrically isomorphic.

Compression Transformation

We define the linear compression mapping $C : \mathcal{R}(\widehat{G}) \to \mathcal{R}^{\sigma}(G)$ by setting, for each $m \in \mathcal{R}(G), u \in V(G)$,

C is in fact a surjective contraction onto the space $\mathcal{R}^{\sigma}(G)$. We have the equation

 $||m^{\sigma}||_{\mathcal{R}^{\sigma}} = \min\{||m||_{\mathcal{R}} \mid m \in \mathcal{R}(\widehat{X}); Cm = m^{\sigma}\}$

for each $m \in \mathcal{R}^{\sigma}(G)$.

[1] Solomon, Justin (2018). "Optimal Transport on Discrete Domains." Notes for AMS Short Course on Discrete Differential Geometry, San Diego. [2] Weaver, Nik (1999). "Lipschitz algebras." World Scientific, River Edge, N.J.

Notation

• $S^1 := \{ Z \in \mathbb{C} : |Z| = 1 \}$

• \mathbf{S}_p^1 p-th roots of unity • span_{$\mathbb{F}}{...} \mathbb{F}$ -linear span of {...}</sub>

Results

 $-tg \mid t \in [-1, 1] \} \subset B_{\operatorname{Lip}^{\sigma}},$

Convex extreme points.

 $\in E(G) \mid \{u, v\} \text{ is } \sigma \text{-satisfied by } f\},$

and which we equip with the same signature structure σ as on G, is unbalanced on each of its connected components.

$$\inf\left\{\sum_{i}|a_{i}| \mid m=\sum_{i}a_{i}m_{u_{i}v_{i}}^{\sigma}\right\}.$$

Kantorovich duality.

For an unbalanced, simple magnetic graph (G, σ) the spaces $\mathcal{R}^{\sigma}(X)$

$$Cm)(u) = \sum_{\xi \in \mathbf{S}_p^1} \xi m(u, \xi).$$

References.