Magnetic Graphs & Lifts

A combinatorial graph $G = (V(G), E(G))$ is called simple if its vertex set is finite and its edge set contains no loops or multiple edges. A graph is called connected if there is at least one path connecting any two vertices. Throughout, we consider simple, connected graphs. If two vertices $u, v \in V$ are adjacent, we write $u \sim v$.

Signatures

The oriented edge set of a graph G is given by $E^o(G) = \{(u, v), (v, u) : u, v \in V(G), u \sim v\}$.

A signature on a graph is a map $\sigma : E^o(G) \to \mathbb{Z}^*: \{u, v\} \to \sigma_{uv}$ satisfying the property $\sigma_{uv} = -\sigma_{vu}$. A pair (G, σ) is called a magnetic graph.

![Figure: Various lifts from the preceding magnetic graphs.](image)

What is optimal transport on graphs?

Let $G = (V(G), E(G))$ be a simple connected graph equipped with the shortest-path metric d. Suppose one has two mass (probability) distributions defined on the vertices of a graph, say $\nu, \mu : V(G) \to \mathbb{R}$, then we may consider the question of how one can transport the mass μ to the mass ν. This is formalized with the notion of a transport plan γ, a non-negative function which quantifies the amount of mass moved from vertex u to vertex v. $\gamma(u, v)$ is the set of all admissible μ, ν-transport plans γ. Then the transport cost of μ and ν with respect to the metric d (for the Wasserstein metric) may be formulated:

$$W_d(\nu, \mu) = \inf_{\gamma \in \Gamma(\mu, \nu)} \sum_{uv \in E(G)} d(u, v)\gamma(u, v).$$

(1)

Optimal transport on graphs is the study of this quantity, others like it, and the transport plans which attain them.

Let $\nu \in V(G)$ be a fixed 'base vertex.' We define the Lipschitz space and its norm:

$$Lip^\sigma(G) = \{f : V(G) \to \mathbb{R} \mid f(u) = 0, \|f\|_{Lip} = \max_{uv \in E(G)} |f(u) - f(v)|\}$$

for each $f \in Lip^\sigma(G)$. If $f \in Lip^\sigma(G)$ and if $\|f\|_{Lip} \leq 1$, then f is called an extreme point of the unit ball in $Lip^\sigma(G)$ (denoted B_{Lip}^σ). If f is an extreme point of B_{Lip}^σ, then $g = 0$. If $(u, v) \in E(G)$, we say that (u, v) is a satisfied by f provided $\|f(u) - f(v)\| = 1$.

Convex extreme points.

Let (G, σ) be an unbalanced graph, and $f \in B_{Lip}^\sigma$. Then f is an extreme point of B_{Lip}^σ if and only if the magnetic graph H_f defined by the vertex set $V(G)$, the edge set $E(H_f) = \{(u, v) \in E(G) \mid (u, v) \text{ is satisfied by } f\}$, and which we equip with the same signature structure σ as on G, is unbalanced on each of its connected components. Similarly, we may define a magnetic atom for every pair of adjacent vertices u, v, and the σ-Arens-Eells space to be $A^E: \sigma(G) := \text{span}\{m_{uv} \mid u, v \in V(G)\}$ equipped with the norm $\|m\|_E := \inf \left\{ \sum_i |a_i| \mid m = \sum_i a_i m_{u_i, v_i} \right\}$.

Kantorovich duality.

For an unbalanced, simple magnetic graph (G, σ), the spaces $A^E(X)$ and $\text{Lip}^\sigma(X)$ are isometrically isomorphic.

Open Questions

(1) How can we further describe $\|\cdot\|_E$ in terms of the norm $\|\cdot\|_{\text{Lip}^\sigma}$ using the compression mapping?

(2) How can magnetic transport be interpreted as a physical process?

Results

In the case of a simple magnetic graph (G, σ), we may consider two new normed spaces. The σ-Lipschitz space $\text{Lip}^\sigma(G)$ and its norm are defined by $Lip^\sigma(G) = \{f : V(G) \to \mathbb{R} \mid \|f\|_{Lip, \sigma} = \max_{uv \in E(G)} |f(u) - f(v)|\}$.

In $\text{Lip}^\sigma(G)$, if $f \in \text{Lip}^\sigma(G)$ with $\|f\|_{Lip, \sigma} \leq 1$, then f is called an extreme point of the unit ball in $\text{Lip}^\sigma(G)$ (denoted B_{Lip}^σ) provided that for any $g \in \text{Lip}^\sigma(G)$, if it holds that $\|f + tg\| < 1$ for $t \in [-1, 1]$.

Compression Transformation

We define the linear compression mapping $C : A^E(G) \to A^E(G)$ by setting, for each $m \in A^E(G), u \in V(G)$,

$$C(m)(u) = \sum_{v \in V} \xi_{uv} m(v).$$

C is in fact a surjective contraction onto the space $A^E(G)$, which we have the equation $\|m\|_E \leq \|C(m)\|_E$ for each $m \in A^E(G)$.

Notes and References