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Abstract. We prove a version of the Szemerédi regularity lemma using spectral decompositon of adjacency
matrix. The proof is an extension of Tao’s proof, based on exposition by Cioaba and Martin, to the case
where the graph has an edge coloring. The partition we obtain is both classically regular and ensures that
edges within a given cluster have the same color.

1. Introduction

This proof seems to have originated with Frieze and Kannan[2] who were credited by Tao[3] in a
December 2012 blog post explaining the spectral theoretic proof of the regularity lemma. Then in 2013,
Cioaba and Martin[1] wrote up the proof in more detail. This paper is based on the exposition of Cioaba
and Martin, recreating Tao’s spectral proof of the regularity lemma but in the case where the graph has
an edge coloring.

2. Regularity Lemma

Here we consider simple graphs G = (V,E, p), where p : E → R≥0 is a nonnegative edge weight for which
pab > 0 if and only if a, b ∈ V are adjacent. An (edge) r-coloring of E is a partition E = E1∪E2∪· · ·∪Er.
Let T denote the weighted adjacency matrix of G. We define the coloring decomposition of T to be

T = T [1] + T [2] + · · ·+ T [r],

where for i = 1, 2, . . . , r and a, b ∈ V we set

(T [i])ab :=

{
pab {a, b} ∈ Ei
0 otherwise

.

For A,B ⊂ V disjoint we define coloring edge density d[i](A,B) to be

(1) d[i](A,B) :=

∑
a∈A

∑
b∈B(T [i])ab

|A||B|
,

which can also be seen as the average over the A×B block of the matrix T [i].

Lemma 1. Let G = (V,E) be any simple graph with |V | = n, and E1 ∪ E2 ∪ · · · ∪ Er an r-coloring. Let

λ1, λ2, . . . , λn be the eigenvalues of T , and λ
[i]
1 , λ

[i]
2 , . . . , λ

[i]
n be the eigenvalues of T [i] for i = 1, 2, . . . , r.

Then
n∑
j=1

|λj |2 =

n∑
j=1

r∑
i=1

|λ[i]
j |

2.

Proof. Since T = T [1] + T [2] + · · ·+ T [r] is symmetric,
n∑
j=1

|λj |2 = tr
(
T 2
)

= tr
(

(T [1] + T [2] + · · ·+ T [r])2
)

=

2∑
i=1

tr
(

(T [i])2
)

+

r∑
i,j=1
i 6=j

tr
(
T [i]T [j]

)
.

(2)
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We then compute for i 6= j and a ∈ V fixed,

(T [i]T [j])aa =
n∑
k=1

T
[i]
akT

[j]
ka = 0

by construction. By the symmetry of T [i] and equation (2) the claim holds. �

Lemma 2 (Szemerédi regularity with edge coloring). For any ε > 0, there isM = M(ε) ≥ 1 and N(ε) ≥ 1
so that for any simple graph G = (V,E) with n ≥ N(ε) vertices, and any r-coloring E = E1∪E2∪· · ·∪Er,
there is a partition of the vertex set V = V0 ∪ V1 ∪ . . . VM such that

(i) Each of the edges with vertices contained in the set Vs for any s ∈ {1, 2, . . . ,M} have the same
color,

(ii) there is an exceptional class Σ ⊂
({1,2,...,M}

2

)
(which contains all pairs with V0) satisfying∑

(s,t)∈Σ

|Vs||Vt| < C(r)εn2,

where C(r) is some constant O(r),

(iii) and for any pair (s, t) /∈ Σ and any A ⊂ Vs, B ⊂ Vt satisfying |A| > ε1/2|Vs| and |B| > ε1/2|Vt|,
we have

|d[i](A,B)− d[i](Vs, Vt)| < ε.

Proof. Start with the spectral decompositions of the adjacency matrix T and its coloring decomposition
components, written

T =
n∑
j=1

λjuju
∗
j , T [i] =

n∑
j=1

λ
[i]
j (u

[i]
j )(u

[i]
j )∗

where we index the eigenvalues according to absolute value in decreasing order:

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|, |λ[i]
1 | ≥ |λ

[i]
2 | ≥ · · · ≥ |λ

[i]
n |

for i = 1, 2, . . . , r. It is useful to note that since tr
(
T 2
)

is the sum of the degrees of the vertices in the

graph, and since T is self-adjoint,
∑n

j=1 |λj |2 = tr
(
T 2
)

= 2|E| ≤ n2. The same estimate, albeit weaker,

holds for the matrices T [i]. That is,
∑n

j=1 |λ
[i]
j |2 = tr

(
(T [i])2

)
≤ 2|E| ≤ n2. With this estimate and the

monotone ordering of the eigenvalues, it holds

(3) |λ[i]
j | ≤

n√
j

for i = 1, 2, . . . , r.
Let ε > 0 be given. We will determine a function F : N → N, dependent on ε and r, that satisfies

F (i) > i for i ∈ N. For k = 1, 2, . . . , 1/ε3 let F (k) be the k-th composition of F with itself. Assuming

n ≥ F (1/ε3)(1) (this is our cutoff N(ε) as in the statement of the lemma), partition the interval [1, n] into

1/ε3 pieces of the form [F (k−1)(1), F (k)(1)) where k = 1, 2, . . . , 1/ε3. Define for each k the number

Λk :=
∑

F (k−1)(1)≤j<F (k)(1)

n∑
i=1

|λ[i]
j |

2

so that by Lemma 1, it holds

(4) n2 ≥
n∑
j=1

|λj |2 =

1/ε3∑
k=1

|Λk|2 ≥
1

ε3
min

1≤k≤1/ε3
Λk.

In other words, we can find J ∈ N so that for each i = 1, 2, . . . , r, it holds∑
J≤j≤F (J)

|λ[i]
j |

2 ≤
∑

J≤j≤F (J)

r∑
i=1

|λ[i]
j |

2 ≤ ε3n2.
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This allows us to decompose the spectral decomposition T [i] =
∑n

j=1 λ
[i]
j (u

[i]
j )(u

[i]
j )∗ as follows:

T [i] = T
[i]
1 + T

[i]
2 + T

[i]
3 ,

where

(5) T
[i]
1 =

∑
j<J

λ
[i]
j (u

[i]
j )(u

[i]
j )∗

(6) T
[i]
2 =

∑
J≤j<F (J)

λ
[i]
j (u

[i]
j )(u

[i]
j )∗

(7) T
[i]
3 =

∑
j≥F (J)

λ
[i]
j (u

[i]
j )(u

[i]
j )∗.

We can then define, for each j < J the set V
[i],j

0 to contain each a ∈ V for which the corresponding entry

in u
[i]
j at index a has real or imaginary part at least

√
J
ε n
−1/2 in absolute value. Note

1 = ||u[i]
j ||

2
2 =

n∑
k=1

|u[i]
j (k)|2 =

n∑
k=1

|Re(u
[i]
j (k))|2 + |Im(u

[i]
j (k))|2 ≥

∑
k∈V [i],j

0

J

εn
= |V [i],j

0 | J
εn

whence |V [i],j
0 | ≤ nε

J . Divide the square of side length 2
√

J
ε n
−1/2 centered at the origin in the complex

plane into sub-squares with side length ε3/2

J3/2n
−1/2, of which there are(

2

√
J

ε
n−1/2

)2

/

(
ε3/2

J3/2
n−1/2

)2

= 4
J4

ε4
.

Partition the set vertices outside of the set V
[i],j

0 into at most 4J
4

ε4
clusters determined by where the

corresponding entry of the eigenvector u
[i]
j lies in the subdivided square. Repeat this for each j < J and

i = 1, 2 . . . , r, and define the first exceptional set

V0 :=
⋃
j<J

r⋃
i=1

V
[i],j

0 .

Note that

(8) |V0| ≤ r(J − 1)
εn

J
< rεn.

Having obtained a partition of V − V0 for each j < J and i = 1, 2, . . . , r, we take a common refinement
to obtain a partition V = V0 + V1 + · · ·+ VM where

(9) M ≤
(

4
J4

ε4

)Jr
,

so that at each k = 1, 2, · · · ,M and i = 1, 2, . . . , r the entries of each of the eigenvectors u
[i]
1 ,u

[i]
2 , . . . ,u

[i]
J−1

have entries in magnitude at most

2

√
2
J

ε
n−1/2,

and differ in magnitude by at most

√
2
ε3/2

J3/2
n−1/2.
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We claim that on each block Vs × Vt for s, t ∈ {1, 2, . . . ,M} the matrix T
[i]
1 is almost constant. Precisely,

letting a, c ∈ Vs and b, d ∈ Vt we estimate

|(T [i]
1 )ab − (T

[i]
1 )cd| =

∣∣∣∣∣∣
∑
j<J

λ
[i]
j u

[i]
j (a)u

[i]
j (b)− λ[i]

j u
[i]
j (c)u

[i]
j (d)

∣∣∣∣∣∣
≤
∑
j<J

∣∣∣λ[i]
j

∣∣∣ ∣∣∣u[i]
j (a)u

[i]
j (b)− u

[i]
j (c)u

[i]
j (b) + u

[i]
j (c)u

[i]
j (b)− u

[i]
j (c)u

[i]
j (d)

∣∣∣
≤
∑
j<J

n
∣∣∣u[i]
j (b)

∣∣∣ ∣∣∣u[i]
j (a)− u

[i]
j (c)

∣∣∣+ n
∣∣∣u[i]
j (c)

∣∣∣ ∣∣∣u[i]
j (b)− u

[i]
j (d)

∣∣∣
≤ 2Jn

(
2

√
2
J

ε
n−1/2

√
2
ε3/2

J3/2
n−1/2

)
= 8ε.

Now let d
[i],1
st be the average of the entries in the matrix T

[i]
1 over the block Vs × Vt, i.e.

(10) d
[i],1
st :=

∑
a∈Vs

∑
b∈Vt(T

[i]
1 )ab

|A||B|
.

If A ⊂ Vs and B ⊂ Vt, via triangle inequality,

(11) |1∗B(T
[i]
1 − d

[i],1
st )1A| =

∣∣∣∣∣∑
a∈A

∑
b∈B

(T
[i]
1 )ab − d

[i],1
st

∣∣∣∣∣ ≤∑
a∈A

∑
b∈B

∣∣∣(T [i]
1 )ab − d

[i],1
st

∣∣∣ ≤ 16ε|A||B|.

Moving onto T
[i]
2 , note

∑
a,b∈V |(T

[i]
2 )|2 =

∑
J≤j<F (J) |λ

[i]
j |2 ≤ ε3n2. Define the first class of exceptional

pairs Σ1 to be those s, t ∈ {1, 2, . . . ,M} such that for each (s, t) /∈ Σ1, it holds∑
a∈Vs

∑
b∈Vt

|(T [i]
2 )ab|2 ≤ ε2|Vs||Vt|, i = 1, 2, . . . , r.

Then we can get the estimate

ε2
∑

(s,t)∈Σ1

|Vs||Vt| ≤
∑

(s,t)∈Σ1

∑
a∈Vs

∑
b∈Vt

|(T [i]
2 )ab|2 ≤ ε3n2.

That is,

(12)
∑

(s,t)∈Σ1

|Vs||Vt| ≤ εn2

Looking at those (s, t) /∈ Σ1, we use Cauchy-Schwarz and have for A ⊂ Vs, B ⊂ Vt,

|1∗BT
[i]
2 1A|2 =

∣∣∣∣∣∑
a∈A

∑
b∈B

(T
[i]
2 )ab

∣∣∣∣∣
2

≤

(∑
a∈A

∑
b∈B
|(T [i]

2 )ab|2
)
|A||B| ≤ ε2|Vs||Vt||A||B|

so that

(13) |1∗BT
[i]
2 1A| ≤ ε|Vs||Vt|.

Finally we look at T
[i]
3 . Since the greatest eigenvalue of T

[i]
3 satisfies |λ[i]

F (J)| ≤
n√
F (J)

by equation (3), we

have

|1∗BT
[i]
3 1A|2 ≤ |λ[i]

F (J)|A||B| ≤
n2√
F (J)

.

In the manner of equation (13), we want

(14) |1∗BT
[i]
3 1A| ≤ ε|Vs||Vt|,

4



i.e., n2√
F (J)

≤ ε|Vs||Vt| for vertex clusters outside of some exceptional class. To this end define Σ2 to be

the pairs (s, t) ∈ 1, 2, . . . ,M for which min(|Vs|, |Vt|) ≤ εn
M . Then if F (J) ≥ M4

ε6
and (s, t) /∈ Σ2, it holds

n2√
F (J)

≤ ε3n2

M2
≤ ε|Vs||Vt|.

Recalling equation (9), we know M ≤
(

4J4

ε4

)Jr
so F should satisfy

F (x) ≥ 1

ε6

(
4x4

ε4

)4rx

.

Now we define the overall exceptional class Σ to include all pairs (s, t) ∈ {0, 1, . . . ,M} for which s = 0,
t = 0, (s, t) ∈ Σ1, or (s, t) ∈ Σ2. By equations (8), (12),∑

(s,t)∈Σ

|Vs||Vt| ≤
∑

(s,t)∈Σ1

(|Vs||Vt|) + 2|V0||V |+ 2
∑
|Vs|≤ εnM

|Vs||V |

≤ εn2 + 2ren2 + 2M
εn

M
n ≤ (3 + 2r)εn2.

The final step is to check the coloring density regularity (as in equation (1)) of the vertex clusters outside

of the exceptional class. Let Vs, Vt be any vertex clusters for (s, t) /∈ Σ. Recalling the average d
[i],1
s,t from

equation (10) and the estimate in equation (11), we have via the triangle inequality

|d[i]
st − d

[i],1
st | =

1

|Vs||Vt|
|1∗Vt(T

[i] − T [i]
1 )1Vs |

=
1

|Vs||Vt|
|1∗Vt(T

[i]
2 + T

[i]
3 )1Vs |

≤ 1

|Vs||Vt|

(
|1∗VtT

[i]
2 1Vs |+ |1∗VtT

[i]
3 1Vs |

)
.

So, by equations (13) and (14) it holds

(15) |d[i]
st − d

[i],1
st | ≤

1

|Vs||Vt|
(ε|Vs||Vt|+ ε|Vs||Vt|) = 2ε.

Let A ⊂ Vs, B ⊂ Vt be such that |A| > ε1/2|Vs| and |B| > ε1/2|Vt|. We check using equations (11), (13),
(14) and (15),

|1∗B(T [i] − d[i]
st)1A| ≤ |1∗B(T

[i]
1 − d

[i],1
st )1A|+ |1∗B(d

[i],1
st − d

[i]
st)1A|+ |1∗BT

[i]
2 1A|+ |1∗BT

[i]
3 1A|

≤ 16ε|A||B|+ 2ε|A||B|+ ε|Vs||Vt|+ ε|Vs||Vt|
≤ 16ε|A||B|+ 2ε|A||B|+ 2ε|A||B| ≤ 20ε|A||B|.

Dividing the preceding by |A||B|, we have

|d[i](A,B)− d[i]
st | ≤ 20ε.

�
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