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This expository paper is based on work done while I was student at the University of
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the time since, it has sat in my archive gathering dust and I have decided this year to return
to this document, polish it, and share it with the community. This paper doesn’t contain
original research and is not intended for publication. Many thanks to Prof. Przebinda for
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The contents of this paper are wide-ranging but connected by the topics of Hilbert spaces,
spectral theory, and abstract harmonic analysis. The preliminary section includes the requisite
facts and theorems for the remainder of the paper, as well as a digression on Riesz bases. The
second and third sections are focused on deriving the general spectral theorem for Hilbert
spaces in finite and arbitrary dimension, respectively. The fourth and fifth sections present
applications of the general theory: first to finite abelian groups, then to the space L2(S1, µ).
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2 SAWYER JACK ROBERTSON

1. Banach Algebras and Hilbert Spaces

This preliminary section will consist of the fundamental definitions and tools of Banach
algebras and Hilbert spaces, followed by a brief digression on Riesz bases for Hilbert spaces.
Bold is occasionally in this section to help the reader refer back to these definitions quickly.
V will be a vector space. Unless otherwise specified, the field for V will be taken as C.

1.1. Banach Algebras. Shortly we will consider the spectral theory of certain classes of
operator algebras. We will write down some preliminary details here so that the discussion
may proceed more smoothly later on. This covers the general theory of Banach Algebras.

Definition 1.1. Let V be a vector space. A map ‖·‖ : V → R is called a norm provided that
for each x, y ∈ V and α ∈ C,

(1) ‖x‖ ≥ 0,
(2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,
(3) ‖αx‖ = |α| ‖x‖,
(4) ‖x‖ = 0 ⇐⇒ x = 0.

(V, ‖·‖) is a called a normed space.

Examples of normed spaces include Cn with any one of the following choices:

(i) ‖(z1, z2, . . . , zn)‖22 :=
∑n

i=1 |zi|2
(ii) ‖(z1, z2, . . . , zn)‖∞ := max1≤i≤n |zi|

(iii) ‖(z1, z2, . . . , zn)‖1 :=
∑n

i=1 |zi|.

Definition 1.2. Let {xn}∞n=0 be a sequence in a normed space V . Then xn is said to be
Cauchy if for each ε > 0 there is a natural number N ≥ 0 such that for any n,m ≥ N it holds

‖xn − xm‖ < ε.

A sequence {xn}∞n=0 in a normed space V is said to converge to a limit x ∈ V if for each ε > 0
there is a natural number N ≥ 0 such that for any n ≥ N , it holds

‖xn − x‖ < ε.

Finally, if each Cauchy sequence in a normed space V is indeed convergent to a limit in V ,
then V is called complete. In this important case, V is called a Banach space.

Definition 1.3. An algebra A over a field F is a vector space equipped with a bilinear product;
that is, a mapping ⊗ : A×A → A satisfying the following:

(1) (x+ y)⊗ z = x⊗ x+ y ⊗ z,
(2) x⊗ (y + z) = x⊗ y + x⊗ z,
(3) (αβ)x⊗ y = (αx)⊗ (βy),

for each x, y, z ∈ A and α, β ∈ F. A is called unital if there exists an identity element e ∈ A
for which e ⊗ x = x ⊗ e = x for each x ∈ A. An element x ∈ A is called invertible if there
exists an element x−1 satisfying x−1 ⊗ x = x⊗ x−1 = e. To be concise, the product operation
is henceforth denoted by concatenation.

Algebras include R,C, as well as Mn(C), the space of n× n complex matrices.

Definition 1.4. Let A be an algebra and suppose A is equipped with a norm structure ‖·‖
with respect to which A forms a Banach space. A is called a Banach algebra if, for each
x, y ∈ A it holds

‖xy‖ ≤ ‖x‖ ‖y‖ .
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We introduce an important concept to pretext an example of a Banach algebra. Suppose
V,W are two vector spaces spaces over the same field, and T : V → W is a linear mapping.
We say T is bounded if there exists a C ≥ 0 for which ‖Tx‖ ≤ C ‖x‖ for each x ∈ V . It can be
easily proved that the ε-δ definition of continuity will coincide with the notion of boundedness.

Definition 1.5. Suppose V,W are vector spaces. We define the operator space L(V,W ) to
be the set of bounded operators T : V → W . In a specific case, L(V ) is the space of linear
operators V → V .

Definition 1.6. Let V be a normed space. Then the following map ‖·‖ defined by

‖T‖ := inf{C ≥ 0
∣∣ ‖Tx‖ ≤ C ‖x‖ for each x ∈ V }

is a norm on L(V ). Moreover, ‖·‖ satisfies, for each S, T ∈ L(V ),

‖ST‖ ≤ ‖S‖ ‖T‖ .
If V is a Banach space, then L(V ) is a Banach algebra.

Theorem 1.7 (Gelfand-Mazur). Suppose A is a Banach algebra for which each x ∈ A\{0}
is invertible. Then A is isomorphic to C, in the sense that there is a mapping φ : A → C
which is an isometric isomorphism of vector spaces.

The proof of this fact, while relatively accessible, does require a fair bit of machinery
which we prefer to defer to the literature. Good sources on this include Folland[4, p. 4] and
Remling[7, p. 73].

Definition 1.8. Let A be a commutative Banach algebra. Then a subspace K ⊂ A is called
a right ideal if for each x ∈ K and y ∈ A, xy ∈ K.

We say a right ideal K is proper if K 6= A, and we notice that such an ideal is proper
if and only if it does not contain any invertible elements (for if x ∈ K is invertible, then
xx−1 = e ∈ K whence K = A). Moreover, we say a proper ideal is maximal if it is not
contained in any larger proper ideals. Note every proper ideal is contained in some maximal
ideal. This motivates the following lemma:

Lemma 1.9. Let A be a commutative Banach algebra and suppose K is a maximal ideal in
A. Then K may be realized as the kernel of a functional ψ : A → C which is a multiplicative
homomorphism.

Proof. Put a relation on A by setting x ∼ y if x− y ∈ K. Let π : A → A\K : x 7→ [x] to be
the quotient mapping sending each x to its equivalence class in the quotient space. Using the
standard quotient norm

‖[x]‖A\K := inf
k∈K
‖x− k‖A ,

the quotient space A\K becomes a Banach algebra (note: multiplication in the quotient is
well-defined from the commutativity of the algebra). Moreover, every nonzero element of
this quotient space is invertible since the quotient space does not contain any proper ideals;
whence, by Gelfand Mazur theorem, it is isomorphic to C by some isomorphism φ. Set
ψ = φ ◦ π; then, ψ is a multiplicative functional on A, taking the value 0 strictly on elements
of K as desired. �

Definition 1.10. An involution on a Banach algebra A is a map x 7→ x∗ so that for each
x, y ∈ A and λ ∈ C, the following hold:

(1) (x+ y)∗ = x∗ + y∗



4 SAWYER JACK ROBERTSON

(2) (λx)∗ = λx∗

(3) (xy)∗ = y∗x∗

(4) x∗∗ = x

Definition 1.11. A Banach algebra A equipped with an involution ∗ is called a ∗-algebra; if
‖xx∗‖ = ‖x‖2 for each x ∈ A, then A is called a C∗-algebra.

1.2. Hilbert Spaces.

Definition 1.12. Let V be a vector space. A Hermitian inner product on V is a map 〈·, ·〉 :
V × V → C satisfying the following four axioms for each x, y, z ∈ V and α ∈ C:

(Linearity in first argument) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
(Homogeneity in first argument) 〈αx, y〉 = α〈x, y〉
(Conjugate symmetry) 〈x, y〉 = 〈y, x〉
(Positive definiteness) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0

where the overline in the thir axiom denoted complex conjugation.

We say two vectors x, y ∈ V are orthogonal if 〈x, y〉 = 0. We define the induced norm or

length of a vector x ∈ V to be ‖x‖ =
√
〈x, x〉. A vector space equipped with a Hermitian

inner product is called an inner product space.

Definition 1.13. Let V be an inner product space. An orthonormal basis for V is a
collection of vectors {ui}i∈I for which the following hold:

(1) Each ui has norm one,
(2) each pair of distinct vecotrs in the collection are orthogonal,
(3) each v ∈ V has a representation v =

∑
i∈I viui as a converging series.

Definition 1.14. If V is a complete inner product space, V is called a Hilbert space.

One important example of a Hilbert space is Cn under the inner product

〈(z1, z2, . . . , zn), (w1, w2, . . . , wn)〉 :=

n∑
i=1

ziwi.

Another key example that will show up in another form later is the space L2(R, µ) of square-
integrable functions:

L2(R, µ) :=

{
f : R→ C measurable

∣∣ ∫
R
|f(x)|2dµ(x) <∞

}
where

∫
dµ is the standard Lebesgue measure on R, see e.g., Royden & Fitzpatrick [8, Part

1]. The inner product in this space, similar to the preceding example, is

〈f, g〉 :=

∫
R
f(x)g(x)dµ(x).

Before moving onto operators, some quick topology. A set U ⊂ V in a Hilbert space V is said
to be closed if it contains the limits of all of the convergent sequences in the space. A set
O ⊂ V is said to be open if for each x ∈ O there is an ε > 0 for which

{y ∈ V
∣∣ ‖x− y‖ < ε} ⊂ O,

that is, O contains an open ball around the element with some positive radius. A Hilbert
space V is said to be separable if it contains a sequence {xn}∞n=0 so that for any nonempty
set O ⊂ V , there is an element of the sequence {xn}∞n=0 3 xk ∈ O.



TOPICS IN HILBERT SPACES, SPECTRAL THEORY, AND HARMONIC ANALYSIS 5

Theorem 1.15. A Hilbert space V contains a countable orthonormal basis if and only if it is
separable.

We defer the proof of this theorem to the literature.
Now we transition away from the algebraic and analytical structure of a Hilbert space and

focus for a moment on the analytical structures associated to linear operators, in particular,
those on Hilbert spaces.

Definition 1.16. We define the dual space of V , denoted V ∗ to be the vector space of
continuous complex-valued linear transformations, or the set of linear functionals on V .

In the case where V has finite dimension, the continuity requirement is redundant. In the
infinite-dimensional case, it is essential.

Definition 1.17. Let V be a Hilbert Space, and suppose T ∈ L(V ). We define the adjoint
of T to be the unique operator T ∗ satisfying

〈Tx, y〉 = 〈x, T ∗y〉
for each x, y ∈ V .

The existence of an adjoint operator for each T ∈ L(V ) is a consequence of the Riesz
representation theorem for Hilbert Spaces. In fact, a matrix representation of an adjoint
to an operator on a finite-dimensional Hilbert Space can be found by taking the conjugate
transpose of a matrix representation of the operator. We say an operator is normal if it
commutes with its adjoint, and we say an operator is self-adjoint if it is equal to its adjoint.

Theorem 1.18. Let V be a finite dimensional Hilbert Space, and suppose T ∈ L(V ) is normal.
Then for each x ∈ V ,

‖Tx‖ = ‖T ∗x‖

Proof. The proof is routine: Fix x ∈ V , and notice

〈Tx, Tx〉 = 〈x, T ∗Tx〉 = 〈x, TT ∗x〉 = 〈T ∗x, T ∗x〉
�

We now give some spectral theoretic definitions and two lemmas which will be used later
on as needed.

Definition 1.19. Suppose T ∈ L(V ) for some Hilbert Space V has eigenvalue λ 6= 0. We
define the eigenspace associated to λ to be

Eλ := {v : Tv = λv}.

Lemma 1.20. Let V be some Hilbert Space, and let T ∈ L(V ) be normal. Then for every
nontrivial v ∈ V , we have Tv = λv ⇐⇒ T ∗v = λv.

Proof. Since T, T ∗ commute, it is clear that for each v, w ∈ V we have

〈Tv, Tw〉 = 〈T ∗v, T ∗w〉 .
whence kerT = kerT ∗. Making use of the fact that T − λI is also normal, we see

Tv = λv ⇐⇒ v ∈ ker (T − λI) ⇐⇒ v ∈ ker (T ∗ − λI) ⇐⇒ T ∗v = λv.

�

Three more useful definitions will round out this section.
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Theorem 1.21. Let V be a separable Hilbert Space, and let U ⊂ V be a closed linear subspace
of V . Define the projection onto U , denoted PU , by PUv =

∑
i 〈ui, v〉ui for some fixed

orthonormal basis {ui} of U . Then PU satisfies:

(1) P 2
U = P ,

(2) P ∗U = PU ,
(3) RangePU = U ,
(4) For closed linear subspaces U,W ⊂ V , PU∩W = PUPW = PWPU .

The proof of this is deferred to the reader; the first three are almost immediate computa-
tions. The fourth can be done through computation again; it might be helpful to first find
an orthonormal basis for the intersection, extend it to two separate bases for U,W , and then
compute. One detail that has been somewhat overlooked is the independence of the defintion
of PU on the choice of orthonormal basis used to define it explicitly (this is a cleverer but still
striaghtforward computation).

Definition 1.22. Let V be a finite-dimensional vector space, and let T ∈ L(V ). We say that
T is diagonalizable with respect to a specified basis of V if its matrix representation, taken
with respect this basis, is diagonal.

Definition 1.23. Let V be a Hilbert space, and let {Wλ}λ∈Λ be some family of mutually
orthogonal subspaces of V . We say that V is the orthogonal sum of {Wλ}λ∈Λ and write

V =
⊕
λ∈Λ

Wλ

if each w ∈ V has a unique representation as a converging series w =
∑

λ∈Λ cλwλ of vectors
in wλ ∈Wλ.

A trivial example of an orthogonal decomposition of, say, a separable Hilbert space V would
be as the orthogonal sum of the spaces generated by each vector in its countable orthonormal
basis.

1.3. Digression: Riesz bases. Riesz bases have arisen in the modern theory of Hilbert
spaces as a cousin to the classical orthonormal basis, but which are somewhat weaker in
their structure. This have been used, for example, in the construction of multiresolution
approximations of L2(R), important in the theory of wavelets and harmonic analysis. This
topic is somewhat orthogonal to the overall discussion, but fits nicely within a discursive
treatment of Hilbert spaces. The purpose of this section will be to establish three classical
characterizations of Riesz bases for a given Hilbert space. Most of the arguments here are
adapted from [2, Ch. 3].

Definition 1.24. A sequence {xn}∞n=1 in a Hilbert space V is called complete if it is linearly
independent, and if for each ε > 0 and x ∈ V there is a finite linear combination

∑
j cjxnj

for which
∥∥∥x−∑j cjxnj

∥∥∥ < ε.

Definition 1.25. Let V be a Hilbert space. A sequence {xn}∞n=1 ⊂ V is a Bessel sequence if
there is a constant B > 0 such that for each x ∈ V it holds

∞∑
n=1

| 〈x, xn〉 |2 ≤ B ‖x‖2 .

The least such B for which the inequality holds will be called the Bessel constant of the se-
quence.
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Lemma 1.26. Let V,W be Hilbert spaces, with {xn}∞n=1 ⊂ V and {yn}∞n=1 ⊂ W ; where
{xn}∞n=1 is a Bessel sequence with constant B, and {yn}∞n=1 is complete in V . Moreover
assume that there exists A > 0 for which

A

N∑
n=1

|cn|2 ≤

∥∥∥∥∥
N∑
n=1

cnyn

∥∥∥∥∥
2

for any finite sequence of scalars {cn}Nn=1. Then

U(
N∑
n=1

cnyn) :=
N∑
n=1

cnxn

defines a bounded map from span{yn}∞n=1 → span{xn}∞n=1 which has a unique bounded exten-

sion from V →W whose norm is at most
√
B/A.

Proof. Since {yn}∞n=1 is complete in V , any element of its span is uniquely represented as a
finite linear combination of its elements, which confirms the well-definition of the operator U .
Given a finite sequence of scalars {cn}Nn=1, since {xn}∞n=1 is Bessel, we have the estimate∥∥∥∥∥U(

N∑
n=1

cnyn)

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
n=1

cnxn

∥∥∥∥∥
2

≤ B
N∑
n=1

|cn|2

≤ B

A

∥∥∥∥∥
N∑
n=1

cnyn

∥∥∥∥∥
2

whence U , defined between the spans, is bounded. Since {yn}∞n=1 is dense, we can extend U
to the entire space V whilst preserving the norm estimate above. �

Theorem 1.27. Let V be a Hilbert space, and {xn}∞n=1 ⊂ V be a sequence. Then the following
are equivalent:

(i) xn = Uen for each n ≥ 1, where {en}∞n=1 ⊂ V is some orthonormal basis for V and
U is a bounded, bijective operator on V .

(ii) {xn}∞n=1 is complete in V and there exist scalars A,B > 0 such that for every finite
sequence of scalars {cn}Nn=1, it holds

A

N∑
n=1

|cn|2 ≤

∥∥∥∥∥
N∑
n=1

cnxn

∥∥∥∥∥
2

≤ B
N∑
n=1

|cn|2.

(iii) {xn}∞n=1 is complete in V and its Gram matrix aij := 〈xi, xj〉 defines a bounded, invert-
ible linear operator on `2(N) (Hilbert space of square-summable complex sequences).

Proof. (i⇒ ii). Let xn = Uen for each n ≥ 1 and some aforementioned U, {en}∞n=1; we
estimate ∥∥∥∥∥

N∑
n=1

cnxn

∥∥∥∥∥
2

≤

∥∥∥∥∥U
(

N∑
n=1

cnen

)∥∥∥∥∥
2

≤ ‖U‖2
∥∥∥∥∥
N∑
n=1

cnen

∥∥∥∥∥
2

= ‖U‖2
N∑
n=1

|cn|2.

Similarly,

N∑
n=1

|cn|2 =

∥∥∥∥∥
N∑
n=1

cnen

∥∥∥∥∥
2

=

∥∥∥∥∥U−1U

(
N∑
n=1

cnen

)∥∥∥∥∥
2

≤
∥∥U−1

∥∥2

∥∥∥∥∥
N∑
n=1

cnxn

∥∥∥∥∥
2

.
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Putting the two estimates together gives the first implication.
(ii⇒ i). Assume for a moment that we are able to deduce from the inequality (ii) that

{xn}∞n=1 is itself a Bessel sequence. We can then fix an orthonormal basis {en}∞n=1 and define
an operator U : en 7→ xn on V whose boundedness would follow from Lemma 1.26 (here, ‘A’ as
in the lemma is 1 since {en}∞n=1 is an orthonormal basis). Similarly, the operator V : xn 7→ en
on V would be bounded by the lemma (here, ‘A’ as in the lemma is the same ‘A’ as in (ii));
since UV = V U = Id, we have the desired representation of our sequence {xn}∞n=1 = {Uen}.
Returning to the initial comment we need to prove that {xn}∞n=1 is Bessel, for which I found
an interesting (if roundabout) argument. Recall for a moment that if F : X → Y is a bounded
operator between normed spaces, we can write its formal transpose operator via

F t : Y ∗ → X∗ : y∗ 7→ F ty∗,
(
F ty∗

)
(x) = y∗(Fx).

Looking at the R.H.S. of the assumed inequality and taking limit where needed, we can observe
that the operator T : `2(N) → V defined by {cn}∞n=1 7→

∑∞
n=1 cnxn is bounded. Suppose we

take a functional in V ∗; by Riesz representation, we can write it in the form 〈·, x〉V where
x ∈ V . For {cn}∞n=1 ∈ `2(N) fixed, we can then look at

(
T t 〈·, x〉

)
({cn}∞n=1) =

〈 ∞∑
n=1

cnxn, x

〉
=
∞∑
n=1

cn 〈xn, x〉 = 〈{cn}∞n=1, {〈xn, x〉}∞n=1〉`2(N) .

So, we have proved that T t : 〈·, x〉 7→ 〈·, {〈xn, x〉}〉`2(N). Since T was bounded, so is T t, as well

as the formal mapping x 7→ {〈xn, x〉}. The inequality in Definition 1.25 holds by this duality
argument, and the implication is proved. One remark: though this approach isn’t ‘sexy,’ it is
revealing: the upper bound in the desired Bessel condition is in some sense dual to the upper
bound in (ii).

(i⇒ iii). Let xn = Uen for each n ≥ 1 and some aforementioned U, {en}∞n=1 as in (i).
Then an entry of the Gram matrix would be

〈xi, xj〉 = 〈Uei, Uej〉 = 〈U∗Uei, ej〉

which is the i, j-th entry in the matrix representation of the bounded operator U∗U on V in
the basis {en}∞n=1, as desired.

(iii⇒ i). Now we assume that the Gram matrix aij = 〈xi, xj〉V defines a nice bounded

operator on `2(N). Fix an orthonormal basis {en}∞n=1 ⊂ V and define a new bounded operator
T on V by the equation 〈Tei, ej〉 = 〈xi, xj〉. Considering

∑∞
n=1 cnen ∈ V , we compute〈

T

( ∞∑
n=1

cnen

)
,

∞∑
j=1

cjej

〉
=

∞∑
n,j=1

cncj 〈Ten, ej〉 =

∞∑
n,j=1

cncj 〈xn, xj〉 =

∥∥∥∥∥
∞∑
n=1

cnxn

∥∥∥∥∥
2

≥ 0.

A similar computation will show that T is also self-adjoint. Since T is positive and self-adjoint,
by the result [3, Thm. 5.1.3], we can find a bounded operator R on V for which T = R∗R, so
that

〈xi, xj〉 = 〈Tei, ej〉 = 〈Rei, Rej〉 .

The invertibility of R follows from the assumed invertibility of 〈xi, xj〉 on `2. This completes
the proof. �

Definition 1.28. A sequence {xn}∞n=1 in a Hilbert space V is called a Riesz basis if any of
the conditions in Theorem 1.27 is satisfied.
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2. Spectral Theorem for Finite Dimensional Hilbert Spaces

In this section, we state and prove the spectral theorem for a finite dimensional Hilbert
space. Before addressing this goal, however, we look at the Schur decompositon of an n × n
complex matrix. First, some terminology and notation. These arguments follow those used
by Axler[1, § 7B]; this author finds his approach particularly accessible and straightforward.

We use Mn(C) to denote the vector space of n×n matrices with complex entries; the identity
matrix is denoted Id. Recall that if A ∈ Mn(C), we can consider its action on Cn by linear
transformation and speak of its adjoint operator. One verifies that the matrix representation
of the adjoint of A is in fact

A
t

=: A∗

where the superscript t denotes matrix transposition. We use the notation

Un := {U ∈Mn(C)
∣∣ U∗U = Id ∈Mn(C)}

for n× n unitary matrices.

Theorem 2.1 (Schur Decomposition ofMn(C)). Let A ∈Mn(C). Then there exists a U ∈ Un,
and an upper-triangular matrix B, so that

(1) U∗AU = B.

Proof. The theorem is vacuous in the case of M1(C), so let us assume inductively that it holds
for any Mk(C), k ≤ n− 1. Fix A ∈ Mn(C), and choose λ ∈ C, x ∈ Cn with ‖x‖ = 1, so that
Ax = λx (existense here is due to the existence of a complex eigenvalue for any given matrix,
c.f. Fundamental Theorem of Algebra). Now choose some V ∈ Un with first column equal
to x (e.g. extend x to some orthonormal basis of Cn via, say, Gram-Schmidt, and write in

matrix form). Write V = [x Ṽ ]. We compute:

(2) V ∗AV =

[
x∗Ax x∗AṼ

Ṽ ∗Ax Ṽ ∗AṼ

]
We make a couple of observations. First, x∗Ax = λx∗x = λ ‖x‖2 = λ. Second, Ṽ ∗Ax =

λṼ ∗x = 0 ∈ Cn−1, since x is orthogonal to the columns of Ṽ . Then (2) becomes

V ∗AV =

[
λ ...

0 Ã

]
where Ã = Ṽ ∗AṼ . By our induction assumption, we may find a matrix W ∈ Un−1 and an

upper triangular matrix C ∈ Mn−1(C) so that Ã = W ∗CW . We then may factor out the

decomposition of Ã and have

V ∗AV =

[
1 0
0 W ∗

] [
λ ...
0 C

] [
1 0
0 W

]
By setting U = V

[
1 0
0 W ∗

]
∈ Un, and B =

[
λ ...
0 C

]
, we arrive at (1). �

As a corollary, notice that since U∗ is the inverse of U , the conjugation operation performed
by U on A on the L.H.S. of (1) amounts to change of basis in some sense. In other words, we
get the following:

Theorem 2.2 (Schur’s Theorem). Let V be an n-dimensional Hilbert space, and let T ∈
L(V ). Then there exists an upper-triangular matrix representation of T with respect to some
orthonormal basis of V .
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Proof. Fix T ∈ L(V ), and choose an arbitrary matrix representation of T , say S ∈ Mn(C).
Use Schur decomposition to write

Q = PSP−1

for some P ∈ Un, and some upper-triangular matrix Q. Since P ∈ Un, its columns correspond
to an orthonormal basis of Cn. Notice that Q is now the matrix representation of T with
respect to the orthonormal basis given in P , as desired. �

Now the first spectral theorem.

Theorem 2.3 (Spectral Theorem I). Let V be a finite-dimensional Hilbert space, and let
T ∈ L(V ). Then the following are equivalent:

(1) V has an orthonormal basis of eigenvectors of T .
(2) T is diagonalizable with respect to some orthonormal basis of V .
(3) T is normal, i.e. TT ∗ = T ∗T , where T ∗ is the adjoint of T .

Proof. We prove via the following two equivalences:

(1) ⇐⇒ (2) ⇐⇒ (3).

If (2) holds, (1) is clear if one chooses the orthonormal basis in question. Conversely, if (1)
holds, the matrix representation of T with respect to this basis must also be diagonal, so (2)
follows. To show (3) is equivalent to (2), first assume TT ∗ = T ∗T . Apply Schur’s Theorem
to obtain an upper-triangular matrix representation of T with respect to some o.n.b. of V ;
say (T )ij = {tij}ni,j=1, where tij = 0 when i > j. Write down the standard basis of V in the

form {ei}. We recall from Theorem 1 that ‖T ∗x‖ = ‖Tx‖ for each x ∈ V . Recalling that

(T ∗)ij = (T )ji,

|t1,1|2 = ‖Te1‖2 = ‖T ∗e1‖2 =
n∑
j=1

|t1,j |2

which forces |t1,j | = 0 for j > 1. We make a similar comparison using e2 as follows:

|t2,2|2 = ‖Te2‖2 = ‖T ∗e2‖2 =
n∑
j=2

|t2,j |2

forcing |t2,j | = 0 for j > 2. Using induction on 1 ≤ i ≤ n, we find that tij = 0 for each j > i.
Since (T )ij is upper triangular, it must be diagonal and (2) follows. Next, we assume (2).

Let (T )ij be such a diagonal matrix representation. Then, (T ∗)ij = (T )ji is also a diagonal
matrix. All diagonal matrices with entries in C commute, and by extending this from matrices
back to the operators, it follows that T and T ∗ commute. �

3. C*-algebras, Gelfand Theory, and Spectral Theorem

In this section, we approach the same spectral theoretic goals we developed for finite-
dimensional Hilbert spaces in the preceding, but from the loftier perspective of spectral theory
for operator algebras. The conclusions and techniques, underwritten by abstraction, provide
similar results as we saw in the last section, but with much broader scope. We generally follow
Folland’s approach[4].

Definition 3.1. Let A be a commutative unital Banach algebra, and x ∈ A. We define the
spectrum of x to be given by

σ(x) := {λ ∈ C : λe− x is not invertible in A}.
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Definition 3.2. Let A be a commutative unital Banach algebra. We define the spectrum of
A, written σ(A), to be given by

σ(A) := {ψ ∈ A∗ : ψ(xy) = ψ(x)ψ(y) for each x, y ∈ A}.
Theorem 3.3. Let A be commutative unital Banach algebra. Equipping σ(A) with topology
given by pointwise convergence in in A∗, σ(A) becomes a compact Hausdorff space.

Proof. Notice that for each invertible x ∈ A and h ∈ σ(A), we have h(x) = h(ex) = h(e)h(x)
whence h(e) = 1. Consequently, 1 = h(xx−1) = h(x)h(x−1) which implies h(x) 6= 0. Suppose
for some λ ∈ C we have |λ| > ‖x‖, then λe − x is invertible by a straightforward geometric
series argument, so λ−h(x) = h(λe−x) 6= 0, and hence |h(x)| ≤ ‖x‖. This implies that σ(A)
is bounded above in the operator norm by 1, and is hence a subset of the closed unit ball in
L(V,C); moreover, the set is closed under taking pointwise limits in A∗, so it is compact since
it contains its limit points and is bounded (this is of course not true in general, but it is for
this weaker topolgy). σ(A) also inherits separability from L(V,C). �

We shall now move on to some basic notions from the Gelfand theory.

Definition 3.4. Let A be a commutative unital Banach algebra. We define the Gelfand
Transform of A to be the map ΓA : A → C(σ(A)) which takes x 7→ x̂, given by x̂(h) = h(x).

Theorem 3.5. Let A be a commutative unital Banach algebra. We have the following facts:

(1) x is invertible if and only if x̂ does not have a zero.
(2) range(x̂) = σ(x).
(3) ‖x̂‖sup = maxλ∈σ(x)|λ|

Proof. It is clear that ΓA is a homomorphism from A into C(σ(A)), whence the forward
direction of (a) follows from the argument in the proof of theorem 3.3. For the reverse
direction, suppose x is not invertible in A. Then the ideal generated by the singleton set {x}
is proper, and is contained in a maximal ideal. In turn, by Lemma 1.9, there is some h ∈ σ(A)
for which h(x) = 0, whence the Gelfand transform of x has a zero. (b) follows from (a), in

the sense that λe− x is not invertible ⇐⇒ λ̂e− x has a zero ⇐⇒ λ = h(x) for some h. (c)
follows readily from fact (b). �

We now give an additional structural condition for ∗-algebras and show that this coincides
with many properties concerning algebraic structure and the Gelfand transform.

Definition 3.6. Let A be a commutative unital ∗-algebra. Then A is called symmetric if ΓA
is a ∗-isomorphism in the sense that

x̂∗ = x̂.

Theorem 3.7. If A is a commutative unital C∗-algebra, then A is symmetric and Γ(A) is
dense in C(σ(A)).

Proof. Suppose for a moment that for each x ∈ A we have x = x∗ implies x̂ is real valued.
Decompose each x ∈ A by setting x∗ = a−ib with a∗ = a, b∗ = b, and using this decomposition
notice x̂∗ = x̂, whence A is symmetric. We now show that the original assumption follows
for a general commutative unital C∗-algebra. Fix some x ∈ A for which x = x∗, and some
h ∈ σ(A). Write x̂(h) = h(x) := α + iβ and set z = x + ite so that ‖zz∗‖ = ‖x‖2 + t2 and

‖h(z)‖2 = α2 + (β + t)2. We have the following:

α2 + (β + t)2 = ‖h(z)‖2 ≤ ‖z‖2 = ‖zz∗‖ = ‖x‖2 + t2

⇒ ‖x‖2 ≥ α2 + β2 + 2βt
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for each t ∈ R from which we force β = 0 and x̂ to be real valued. It follows from the argument
given at the beginning that A is symmetric. To see that Γ(A) is dense in C(σ(A)), recall that
since A is symmetric, the image Γ(A) is closed under involution and observe that it in fact
separates points. Apply the Stone-Weierstrass theorem to arrive at the claim. �

Theorem 3.8. Let A be a commutative unital Banach algebra. Then TFAE:

(1) ΓA is an isometry between Banach algebras

(2) For each x ∈ A,
∥∥x2
∥∥ = ‖x‖2

(3) For each x ∈ A, ‖x‖ = ‖x̂‖

Proof. Suppose (b) holds. Then ‖x̂‖ = maxλ ∈ σ(x)|λ| = ‖x‖. Conversely, suppose (c) holds.
Then, ∥∥x2

∥∥ ≤ ‖x‖2 = ‖x̂‖2 =
∥∥x̂2
∥∥ ≤ ∥∥x2

∥∥
whence (b) holds. Since (a) ⇐⇒ (c) is clear, the claim follows. �

We now present a key result of this section which is instrumental in our second formulation
of the finite-dimensional spectral theorem.

Theorem 3.9 (Gelfand-Naimark Theorem). Let A be a commutative unital C∗-algebra. Then
Γ is an isometric ∗-isomorphism from A into C(σ(A)).

Proof. Since A is symmetric, ΓA is a ∗-preserving map by 3.7. Notice that for each x ∈ A,

we have
∥∥(xx∗)2

∥∥ = ‖xx∗‖2 and from the previous result
∥∥∥x̂x∗∥∥∥ = ‖xx∗‖, hence

‖x‖2 = ‖xx∗‖ =
∥∥∥x̂x∗∥∥∥ =

∥∥x̂2
∥∥ = ‖x̂‖2

since A is symmetric. This shows ΓA is an isometry, from which it follows that ΓA is injective
and has closed range. By 3.7, Γ(A) is also dense in C(σ(A)) so that Γ is surjective. �

Let us now formulate our second version of the Spectral theorem finite-dimensional Hilbert
spaces.

Theorem 3.10 (Spectral Theorem II). Let V be a finite dimensional Hilbert space, and let
T be a normal operator on V . Then the following hold:

(1) There is an orthonormal basis for V consisting of eigenvectors of T .
(2) T =

∑
λ∈σ(T ) λPEλ.

Proof. Let T ∈ L(V ) be normal, and let A be the C∗-subalgebra of L(V ) generated by
{A,A∗, I}. Then one can check that A is a commutative unital C∗-algebra. By the Gelfand-
Naimark theorem, A is isomorphic to C(σ(A)). Hence, dim

(
C(σ(A))

)
< ∞, which in turn

forces σ(A) to be finite. Notice then that for each f ∈ C(σ(A)),

f =
∑

λ∈σ(A)

f(λ)χλ

where χλ is the characteristic function of {λ}, whence the family χλ for λ ∈ σ(A) is a basis
for the space C(σ(A)). For each χλ, χ2

λ = χλ, χ∗λ = χλ, and χ∩λ{λ} = Πλχλ, from which we
see that each χλ is actually the image of an orthogonal projection Pλ under ΓA, and since A
is isomorphic to C(σ(A)), that the family Pλ is a basis for A. In fact, it is easily checked that

for each S ∈ A with Gelfand Transform Ŝ, one has

S =
∑

λ∈σ(A)

Ŝ(λ)Pλ.
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In particular,

T =
∑

λ∈σ(A)

T̂ (λ)Pλ.

Let us look at the ranges of Pλ as subspaces of V . Suppose Pλv = v. Then, Tv = TPλv =

PλTv = T̂ (λ)v and we see that Pλ is actually a projection onto the eigenspace associated to

eigenvalue T̂ (λ), whence (b) follows. To see why (a) is true, it suffices to observe that since

I =
∑

λ∈σ(A)

Pλ

we have the decomposition

V =
⊕

λ∈σ(A)

Range(Pλ) =
⊕

µ∈σ(T )

Eµ.

Each eigenspace associated to T admits an orthonormal basis, and by taking the union all
eigenspace bases, one arrives at such an orthonormal basis for the whole space. �

4. Fourier Analysis of Finite Abelian Groups

In this section, we strive to apply the spectral theory developed in the preceding sections
to the special setting of Fourier analysis on finite abelian groups; in particular, with the goal
of proving Plancherel Formula for finite abelian groups, and classifying the to a general finite
abelian group in mind. We follow the classic exposition of Stein, Shakarchi[9, ch. 7].

Definition 4.1. Let G be a set closed under a binary operation · : G×G→ G. We say (G, ·)
is an abelian group if it satisfies the following four axioms:

(1) Associativity: For each a, b, c ∈ G, a · (b · c) = (a · b) · c.
(2) Identity: There is some e ∈ G so that for each a ∈ G, a · e = e · a = a.
(3) Inverses: For each a ∈ G there is a−1 so that a · a−1 = a−1 · a = e.
(4) Commutativity: For each a, b ∈ G we have a · b = b · a.

We will omit the · in general, and use juxtaposition to indicate that the group operation is
being performed.

Two examples of abelian groups include (R,+) and (R>0,×). A key example of an abelian
group is the unit circle S1 := {z ∈ C : |z| = 1} under multiplication, where for each ω ∈ S1,
ω−1 = ω.

In some sense, we seek to generalize to the setting of abelian groups the notion of a multi-
plicative functional and consequently the notion of spectrum. We do not necessarily have the
additive or multiplicative structure of, say, a Banach algebra, but we do have the notion of a
homomorphism, which allows us a path forward.

Definition 4.2. Let (G, ·), (H,×) be two abelian groups. A homomorphism is a map φ :
G→ H which preserves the group operations, in the sense that for each a, b ∈ G

φ(a · b) = φ(a)× φ(b).

If φ is a bijection, we say it is an isomorphism and that the groups G,H are isomorphic and
we write G ∼= H.

Definition 4.3. A character on an abelian group (G, ·) is a homomorphism ζ : G→ S1.
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Definition 4.4. Let (G, ·) be an abelian group. The dual group of G is the family

Ĝ := {ζ : G→ S1 : ζ(ab) = ζ(a)ζ(b)}
of characters on G, under operation of pointwise multiplication with identity given by e ≡ 1.

It turns out that characters are in fact the analogues of multiplicative functionals which we
seek. This is illustrated by the following facts.

Lemma 4.5. Let (G, ·) be a finite abelian group and suppose f : G→ C\{0} be a multiplicative
function. Then f is a character.

Proof. Since G has finitely many elements, |f(a)| is bounded for a ∈ G. Since |f(an)| = |f(a)|n
for each a ∈ G, n ∈ N, it follows that |f(a)| = 1 for each a. �

Definition 4.6. Let (G, ·) be a finite abelian group. Define the function space `2(G) := {f :
G→ C}, and equip it with Hermitian inner product

〈f, g〉 =
1

|G|
∑
a∈G

f(a)g(a)

where |G| is the number of elements in G, and with respect to which `2(G) is a Hilbert space

isomorphic to C|G| as a vector space with equivalent (not quite isometric) norms as Hilbert
spaces.

Theorem 4.7. Let (G, ·) be a finite abelian group. Then the dual group Ĝ is an orthonormal
family in `2(G).

Proof. To see that each ζ ∈ Ĝ is unit length, notice that for each ζ ∈ Ĝ one has

‖ζ‖2 =
1

|G|
∑
a

|ζ(a)|2 = 1.

To see why Ĝ is an orthogonal collection, suppose we have two distinct characters ζ, ω ∈ Ĝ.
Find some b ∈ G for which (ζω−1)(b) 6= 1. Then,

(ζω−1)(b)
∑
a∈G

(ζω−1)(a) =
∑
a∈Γ

(ζω−1)(ba) =
∑
a∈Γ

(ζω−1)(a)⇒
∑
a∈Γ

(ζω−1)(a) = 0

whence 1
|G|
∑

a ζ(a)ω(a) = 0 and ζ, ω are orthogonal. �

Theorem 4.8. Let (G, ·) be a finite abelian group. The family Ĝ forms an orthonormal basis
for the function space `2(G).

Proof. Consider the operator Ta ∈ L(`2(G)) defined by

(Taf)(x) = f(ax).

Let us generate an algebra with this family of operators. One may easily check that for each
a ∈ G, the adjoint T ∗a coincides with Ta−1 , so the subalgebra T of L(`2(G)) generated by
{Ta}a∈G is closed under adjoint, and since T is abelian, it is a commutative unital C∗-algebra
under the usual operations, with identity given by the identity operator Te = I on `2(G).

By the Gelfand-Naimark Theorem, T is isomorphic to C(σ(T )). It follows that dim T =
|G| = dimC(σ(T )) = |σ(T )| and that each f ∈ C(σ(T )) may be written

f =
∑

λ∈σ(T )

f(λ)χH
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where χH is the characteristic function of {λ} ⊂ σ(T ). It then follows that {χλ}H is a basis
for C(σ(T )), and by the arguments in the proof of (3.10), that each Ta ∈ T may be written

(3) Ta =
∑

λ∈σ(T )

T̂a(λ)Pλ

where T̂a is the Gelfand transform of Ta, and Pλ = {Γ−1(χ{λ}) are some orthogonal projections
on `2(G) yet to be fully determined. Indeed, let us examine their ranges. Suppose Pλf = f
for some f ∈ `2(G). Then,

Taf = TaPλf = T̂a(λ)f

whence f is a eigenvector associated to Ta with eigenvalue T̂a(λ). In fact, the conclusion on

f is even stronger. f is a simultaneous eigenvector for every Ta ∈ T with eigenvalues T̂a(λ).
It follows that Pλ is a projection onto the space

Eλ := {f ∈ `2(g) : Taf = T̂a(λ)f ∀a ∈ G}.

and, from applying (3) to Te, we obtain the decomposition

(4) `2(G) =
⊕

λ∈σ(T )

Eλ.

For each λ ∈ σ(T ), suggestively construct a function ζλ on G defined by

(5) ζλ(a) = T̂a(λ).

We check that for each a, b ∈ G we have

ζλ(ab) = T̂ab(λ) = λ(Tab) = λ(TaTb)

= λ(Ta)λ(Tb) = T̂a(λ)T̂b(λ) = ζλ(a)ζλ(b)

and that since each Ta is invertible, T̂a is never zero, and consequently that ζλ is also never
zero. By (4.5), it follows that ζλ is in fact a character on G, and by construction, that
ζλ ∈ Eλ. One also observes from our definition in (5) that ζλ, when considered as a functional

Ta 7→ T̂a(λ) on T , is also an element of the spectrum of T , whence the family {ζλ}λ∈σ(T ) in in
fact simply σ(T ). It also follows from (4), (4.7), and our construction in (5), that the family
{ζλ}λ∈σ(T ) is an orthonormal basis for `2(G) and exhausts every character on G (to see the
second fact, suppose there was a different character and one contradicts (4)). We conclude

that σ(T ) = Ĝ = {ζλ}λ∈σ(T ) is an orthonormal basis of `2(G) as claimed. �

We now present the classic Plancherel Formula in the setting of abelian groups which follows
immediately from Theorem (4.8).

Theorem 4.9 (Plancherel Formula). Let (G, ·) be a finite abelian group. For each f ∈ `2(G)

and ζ ∈ Ĝ, set

f̂(ζ) = 〈f, ζ〉 =
1

|G|
∑
a∈G

f(a)ζ(a).

Then

‖f‖2 =
∑
ζ∈Ĝ

|f̂(ζ)|2.
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Let us now transition to the goal of classifying the duals of general finite abelian groups so
as to obtain a concrete understanding of what these functions look like in the wild. We shall
first recall some group-theoretic definitions and develop a result about the dual of a product
group.

Definition 4.10. Let (G, ·) and (H, ◦) be two abelian groups. We define the product group
G×H by the Cartesian product G×H with operation ⊗ defined by

(g, h)⊗ (g′, h′) := (g · g′, h ◦ h′)
for each g ∈ G, h ∈ H.

We leave the verification that this is actually a group as an exercise; identity and inverse
elements in the product are given by pairs of the respective elements in the original groups.
Since it is clear that G,H abelian implies G × H is also abelian, we may construct a dual
product group as follows:

Definition 4.11. Let G,H be abelian groups and let G×H be the product group as defined

above. The dual group of the product, written Ĝ×H, is the group defined by the set of
characters on the product under pointwise multiplication, written

Ĝ×H := {ζ : G×H → S1
∣∣ζ((g1, h1)⊗ (g2, h2)) = ζ(g1, h1)ζ(g2, h2)}.

for every gi, hi ∈ G,H resp., where for each ζ, ω ∈ Ĝ×H, (ζω)(a, α) = ζ(a, α)ω(a, α).

We now prove a nice result regarding such product groups.

Theorem 4.12. Let G,H be finite abelian groups. Then we have the relation

Ĝ×H ∼= Ĝ× Ĥ.

Proof. To prove the claim we must produce a bijective homomorphism between the two groups.
Let us construct such a function as follows. Let

ψ : Ĝ×H → Ĝ× Ĥ : ζ 7→ (ζ(·, eH), ζ(eG, ·))
where eH is the identity in H and eG is the identity in G. We first show that this function
is a homomorphism, in the sense that for any two characters ζ, ω on the product G × H,
ψ(ζω) = ψ(ζ) ⊗ ψ(ω) where ⊗ refers to the operation on the product of the dual groups

Ĝ× Ĥ. Indeed, this is verified as follows:

ψ(ζω) = (ζω(·, eH), ζω(eG, ·))
= (ζ(·, eH), ζ(eG, ·))⊗ (ω(·, eH), ω(eG, ·)) = ψ(ζ)⊗ ψ(ω)

To check surjectivity, we show that any element (ζ, ω) in the product of the duals Ĝ× Ĥ may
be realized as the image of a character on the product group G × H. Indeed, by choosing
ρ(g, h) = ζ(g)ω(h), which is a character on the product group, for each g ∈ G, h ∈ H, we find
that

ψ(ρ) = (ρ(·, eH), ρ(eg, ·)) = (ζ, ω)

so that ψ is a surjection. The verification that ψ is injective is left to the reader. �

Let us now look at some specific finite abelian groups and their duals, and then recall a
classification theorem from algebra.

Definition 4.13. Let N ≥ 1 be an integer. We define the cyclic group of order N to be the
set ZN := {n ∈ Z : 0 ≤ n ≤ N − 1} under the operation of addition modulo N .
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Theorem 4.14. For each n ∈ ZN , define a character on ZN by

en(k) = e
2πink
N

Then the dual to ZN is given by

ẐN = {en}n∈ZN .

Proof. Let us first show that each en is a character. Let N ≥ 1, en be fixed, and let a, b ∈ ZN .
Then, by elementary properties of complex exponentials, one has en(a + b) = en(a)en(b)
whence en is a homomorphism ZN → S1 and a character. Since |{en}n| = |ZN |, we have
found every character on ZN by Theorem (4.8). �

Let us now recall a classification theorem for finite abelian groups from algebra and apply
it here. We state a version from [6, 13.3].

Theorem 4.15 (Classification of Finite Abelian Groups). Let G be a finite abelian group.
Then G is isomorphic to the product of finitely many cyclic groups, each of order pk for some
prime p, and k ≥ 1. Symbolically,

G ∼=
n∏
i=1

Z
p
ki
i

.

We may now state the desired description of the dual to an arbitrary finite abelian group:

Theorem 4.16 (Classification of Dual Groups). Let G be a finite abelian group. Then the dual

Ĝ is isomorphic to the product of finitely many duals of finite cyclic groups of prime-power
order. In other words, we have

Ĝ ∼=
n̂∏
i=1

Z
p
ki
i

∼=
n∏
i=1

Ẑ
p
ki
i

.

Proof. First apply result (4.15) to G, then apply (4.12) and the claim follows. �

5. Fourier Analysis on Unit Circle

In this section, we will derive some classical theorems from Fourier Analysis by applying the
spectral theory we have developed to L2(S1, µ). Let us begin this exploration by first looking
at S1 as a domain itself. We shall think of S1 as an Abelian group under the operation
of multiplication, and as a compact Hausdorff topological subspace of C equipped with the
subspace topology. As a consequence, there exists a unique (up to multiplication by positive
constant) normalized left- and right-invariant inner- and outer-regular measure µ on the Borel
sets associated to the topology on S1.

More explicity, the measure µ is a non-negative function on the σ-algebra generated by the
open sets in S1, satisfying the following conditions:

(i) For each countable collection of disjoint Borel sets Fi, i ∈ N, we have µ(∪iFi) =∑
i µ(Fi). (countable additivity)

(ii) µ(S1) = 1 and µ(∅) = 0. (normality)
(iii) For every Borel set A, we have µ(A) = inf {µ(U) : U ⊃ A,U open}. (outer-regularity)
(iv) For every open set B, we have µ(B) = sup {µ(K) : K ⊂ B,K compact}.

(inner-regularity)
(v) For every Borel set F and every ω ∈ S1, and cosets ωF := {ωf : f ∈ F}, Fω := {fω :

f ∈ F}, we have µ(ωF ) = µ(Fω) = µ(F ). (left- and right-invariance)
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We shall call µ the normalized Haar measure on S1, and we may then define an integral
∫
S1 dµ

for Borel-measurable functions on the unit circle S1 through the usual techniques of taking
the limit of integrals of simple functions. For more information on this technique, the reader
is referred to a Real Analysis text such as [8], or for a brief treatment on Haar measure, the
paper [5]. We mention the inner- and outer-regularity for thoroughness, but we shall not need
them explicitly here.

Let us now define our function space of interest:

Definition 5.1. We define the space of square-integrable functions on the unit circle:

L2(S1, µ) := {f : S1 → C
∣∣f Borel measurable ,

∫
S1

|f(ω)|2dµ(ω) <∞}

which we equip with inner product

〈f, g〉 =

∫
S1

f(ω)g(ω)dµ(ω)

and associated norm ‖·‖2 given by

‖f‖22 =

∫
S1

|f(ω)|2dµ(ω)

L2(S1, µ) is complete, i.e., a Hilbert space. At this point, we may pose a few questions
about this function space regarding the extent to which the results of the previous section

apply. Does the dual group Ŝ1 form an orthonormal basis for this space, as it did for a similar
space on finite Abelian groups? Does L2 admit a decomposition of the form (4)? Do we have
some sort of analogue of the Plancherel identity here?

Inherent is the identification of the dual group to S1. Since this Abelian group is no longer
finite, we need to alter our definition slightly. In particular,

Definition 5.2. We define the dual group to S1 to be the set

Ŝ1 := {f : S1 → C\{0}
∣∣ f continuous, homomorphism }

under the operation of pointwise multiplication.

Since S1 is a compact subset of C, and each ζ ∈ Ŝ1 is continuous, it follows that |ζ| ≡ 1
by an argument identical to the one provided in the previous section. Let us introduce the
following family of continuous functions S1 → S1.

Definition 5.3. For each n ∈ Z let us define

en : S1 → S1 : ω 7→ ωn.

If we identify each ω ∈ S1 with some complex exponential eiθ for some θ ∈ [0, 2π), then
en(θ) = e2πinθ, which we see resembles our definition of en earlier and justifies its notation.
We then have the expected identification

Ŝ1 = {en}n∈Z.

For a proof of this fact, see [4][p. 98]. Let us continue our analysis of the dual Ŝ1 by checking
that it is an orthonormal family in L2(S1, µ).

Lemma 5.4 (Orthogonality Relations of Ŝ1 in L2(S1, µ)). The family Ŝ1 = {en}n is or-
thonormal in L2(S1, µ).
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Proof. To check orthogonality, let us observe that for each n ∈ Z, ξ ∈ S1, we have the identity∫
S1

en(ω)dµ(ω) =

∫
S1

en(ξω)dµ(ω) =

∫
S1

en(ξ)en(ω)dµ(ω) = en(ξ)

∫
S1

en(ω)dµ(ω)

whence
∫
S1 endµ = 0 for each en 6= 1 ⇐⇒ n 6= 0. One checks that 〈en, em〉 =

∫
S1 en−mdµ

whence 〈en, em〉 = 0 for each n 6= m. We next compute the norm

‖en‖2 =

∫
S1

|en(ω)|2dµ(ω) = µ(ω) = 1

and the proof is complete. �

As we did in the proof of the fact that Ĝ is an orthonormal basis for `(G), let us now
introduce a helpful family of operators on L2(S1, µ) which will provide a vehicle for many
useful arguments. Namely, let S be the subalgebra of L(L2(S1, µ)) generated by the family
of operators {Tω}ω∈S1 defined by

(Tωf)(ξ) = f(ωξ), ξ ∈ S1,

for each f ∈ L2. It is clear that this algebra is commutative since S1 is commutative, and one
can check that for each ω, the adjoint T ∗ω is given by Tω−1 , whence with involution Tω 7→ Tω−1 ,
S is a commutative unital C∗-algebra. Recall that the spectrum of this algebra σ(S) is the
family of continuous nonzero multiplicative functionals on the algebra, and with the operation
of pointwise multiplication, in this setting, σ(S) becomes an Abelian group. This begins to
sound like the dual group, and in fact, we have the following key relation.

Theorem 5.5. We have the relation

σ(S) ∼= Ŝ1

by a group isomorphism.

Proof. We shall prove this result by constructing the isomorphism explicitly. Let us fix some
h ∈ σ(S) and construct an associated character ζh on S1 by setting

ζh(ω) = h(Tω)

for each ω ∈ S1. Since h is multiplicative and continuous, ζh is a character. Let ∆ be the

mapping σ(S)→ Ŝ1 which takes h 7→ ζh. We shall show ∆ is an isomorphism. To check that
it is a homomorphism, we verify that for each h, g ∈ σ(S), ω ∈ S1,

(∆hg)(ω) = (hg)(Tω) = h(Tω)g(Tω) = (∆h)(ω)(∆g)(ω)

whence ∆ is a homomorphism. Let us now check injectivity and surjectivity of this mapping.

For surjectivity, if we start with some character ζ ∈ Ŝ1, we may construct a multiplicative
functional hζ on S defined by

hζ(Tω) = h(ω).

Check that hζ ∈ σ(S) and ∆(hζ) = ζ, whence ∆ is surjective. To check injectivity, suppose we
have two characters ζh, ζg in the range of ∆. Then ζh(ω)ζg(ω

−1) ≡ 1, whence h(ω)g(ω−1) ≡ 1
and h ≡ g. This completes the proof. �

Using the isomorphism relation above and the mapping ∆ as introduced in the proof, we
may give an explicit decomposition of the spectrum σ(S) as follows.
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Theorem 5.6. For each n ∈ Z define a functional hn on S by

hn(Tω) = en(ω).

Then we have

σ(S) = {hn}n∈Z.

Proof. Since {hn} ⊂ σ(S) we only need show any h ∈ σ(S) may be realized as some hn.
It suffices to check here that ∆(hn) = en. This is trivial based on how we constructed hn,
whence the equality follows from the following argument: suppose we have some h ∈ σ(S),

then ∆(h) = en for some n ∈ Z since ∆(h) ∈ Ŝ1 ⊂ {en}n∈Z, and by going backwards,
∆−1(en) = hn = h, whence h is equal to hn, since ∆ acts as a bijection. �

Let us now set up a decomposition of L2(S1, µ) in two stages. Our first formulation will be
a resolution of the identity.

Theorem 5.7 (Resolution of I on L2(S1, µ)). There exists a sequence of mutually orthogonal
projections Pn, n ∈ Z, so that the identity operator I on L2(S1, µ) has the expression

I =
∑
n∈Z

Pn.

Proof. Recalling that S is a commutative unital C∗-algebra, we invoke the Gelfand-Naimark
theorem to observe that S ∼= C(σ(S)) by isometric ∗-isomorphism. Noting that σ(S) = {hn},
we have for each f ∈ C(σ(S)) the expression

(6) f =
∑
n∈Z

f(hn)χ{hn}

for characteristic functions χ{hn}. Recalling here that χ2 = χ, χ = χ, it follows that each
characteristic function χ{hn} has as its preimage under the Gelfand transform an orthogonal

projection Pn. In particular, for each operator Tω on L2, one verifies the expression

Tω =
∑
n∈Z

T̂ (hn)Pn

Applying the formulation (6) to the constant function 1 and its preimage in S, the identity
operator, we have the desired expression

I =
∑
n∈Z

Pn.

�

We now specify the ranges of the projections and explain the role of Ŝ1.

Theorem 5.8 (Decomposition of L2(S1, µ)). Recalling the notation in (5.7), we have the
identification

Range(Pn) = span{en} := En

from which it follows that the family Ŝ1 is an orthonormal basis for L2(S1, µ), and we have
the decomposition

L2(S1, µ) =
⊕
n∈Z

En.
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Proof. Fix n ∈ Z and suppose for some f ∈ L2(S1, µ) we have Pnf = f . This implies that

for each ω, Tωf = TωPnf = T̂ω(hn)f whence f is a simultaneous eigenvector for each Tω
with eigenvalues T̂ω(hn). Let us compute these eigenvalues: T̂ω(hn) = hn(Tω) = en(ω) by
definition of hn, and we have that for each ω ∈ S1, Tωf = en(ω)f which implies the following

f(ω) = (Tωf)(1) = en(ω)f(1)

i.e. f ∈ span(en) = En. The claim follows. �

To demonstrate the importance and strength of the results we have shown, we now read
off four results from the Fourier analysis of the unit circle which follow immediately from the
spectral decompositions we have developed.

Theorem 5.9. For each f ∈ L2(S1, µ) we have the Fourier series representation

f(ω) =
+∞∑

n=−∞
cnen(ω)

of f as a series of the family of functions en converging in the mean-square sense, in that

lim
N→∞

∫
S1

∣∣f(ω)−
N∑

n=−N
cnen(ω)

∣∣2dµ(ω) = 0

with coefficients cn ∈ C given by

cn = 〈en, f〉 =

∫
S1

en(ω)f(ω)dµ(ω)

and L2-norm given by the Plancherel identity

‖f‖2 =
+∞∑

n=−∞
|cn|2.

Proof. The first and third equalities follow from the fact that {en} is an orthonormal basis
for L2(S1, µ), the second is an explicit statement of convergence in L2, and the fourth is a
standard norm computation done in any inner product space. �

The preceding result is important because periodic square-integrable functions in the space
L2[0, 2π) can be isometrically embedded in the space L2(S1, µ), so that the conclusions above
on L2(S1, µ) translate immediately over to conclusions on L2[0, 2π).
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