1. Problem II.18, page 43. See Figure II.16. Note that the plane \(P \) contains the origin.

2. An affine transform \(A \) in \(\mathbb{R}^2 \) is defined as \(A = R_{-\pi} \circ T_{\langle 0,2 \rangle} \circ R_{\pi} \circ S_{1,1} \), where \(S_{a,b} \) denotes a scaling transformation. Draw, on righthand side below, how the “F” is transformed by \(A \). Be sure to label enough points to make your answer clear.

3. Express the transformation \(A \) from problem 2 as a 4 \(\times \) 4 matrix acting on homogeneous coordinates.

4. A light source is placed at \(\langle -1, 0, 0 \rangle \) and it casts shadows onto the plane \(P \) defined by \(x = 5 \). The plane \(P \) is parallel to the \(yz \)-plane and is like an infinite wall. For \(\langle x, y, z \rangle \) is a point in \(\mathbb{R}^3 \) with \(-1 < x \leq 5\), define \(A(\langle x, y, z \rangle) \) to be the position of the shadow of the point on the plane \(P \). For example, \(A(\langle 2, 3, 1 \rangle) = \langle 5, 6, 2 \rangle \) and \(A(\langle 3, 4, 2 \rangle) = \langle 5, 6, 3 \rangle \).

 a. Working in ordinary coordinates (not homogeneous) give the formula expressing the mapping \(A(\langle x, y, z \rangle) = \langle x', y', z' \rangle \). That is, give formulas for \(x', y', z' \) in terms of \(x, y, z \).

 b. Give a 4 \(\times \) 4-matrix that represents the transformation \(A \) over homogeneous coordinates.