Math 155A — Computer Graphics — Winter 2019 Homework #2 — Due Monday, February 4, 9:00pm

Hand in via Gradescope — Use separate pages for each problem 1.-3.

- 1. Suppose \mathcal{C} is a radius 1, height 2 cylinder centered at the origin, with central axis the y-axis. The top face of \mathcal{C} is the horizontal disk of radius one centered $\langle 0, 1, 0 \rangle$. The bottom face of \mathcal{C} is the horizontal disk of radius one centered $\langle 0, -1, 0 \rangle$. ("Horizontal" means parallel to the xz-plane.)
 - Let \mathcal{D} a skewed cylinder (also called an oblique cylinder, please "google" it) which has central axis the line where y = x and z = 0, and has perpendicular height 4, with the top face of \mathcal{D} the horizontal radius 1 disk centered at $\langle 4, 4, 0 \rangle$ and the bottom face of \mathcal{D} the horizontal radius 1 disk centered at $\langle 0, 0, 0 \rangle$.
 - **a.** Draw a picture of D.
 - **b.** Give a $4 \times$ matrix M so that M represents the affine transformation sending \mathcal{C} to \mathcal{D} .
- **2.** Let B be the transformation $\langle x,y,z\rangle\mapsto\langle\frac{1+x}{1-y}-1,\,0,\,\frac{z}{1-y}\rangle$. Give a 4×4 matrix which represents this transformation over homogeneous coordinates. (When $0< y<1,\,B$ give the transformation for a shadow cast from a light at $\langle -1,1,0\rangle$ onto the plane y=0. You do **not** need to use this fact to work the problem!)
- **3.** A light source is placed at $\langle -10, 0, 0 \rangle$ and it casts shadows onto the yz-plane P defined by x = 0. The yz-plane is like an infinite wall.
 - When $\langle x, y, z \rangle$ is a point in \mathbb{R}^3 with $-10 < x \le 0$, define $A(\langle x, y, z \rangle)$ to be the position of the shadow of the point on the yz-plane. For example, $A(\langle -5, 1, 2 \rangle) = \langle 0, 2, 4 \rangle$, and $A(\langle -8, 1, 2 \rangle) = \langle 0, 5, 10 \rangle$
 - **a.** Working in ordinary coordinates (not homogeneous) give the formula expressing the mapping $A(\langle x,y,z\rangle)=\langle x',y',z'\rangle$. That is, give formulas for x',y',z' in terms of x,y,z.
 - **b.** Give a 4×4 -matrix that represents the transformation A over homogeneous coordinates.