Math 155A - Computer Graphics - Winter 2019

Homework \#2 - Due Monday, February 4, 9:00pm
Hand in via Gradescope - Use separate pages for each problem 1.-3.

1. Suppose \mathcal{C} is a radius 1 , height 2 cylinder centered at the origin, with central axis the y-axis. The top face of \mathcal{C} is the horizontal disk of radius one centered $\langle 0,1,0\rangle$. The bottom face of \mathcal{C} is the horizontal disk of radius one centered $\langle 0,-1,0\rangle$. ("Horizontal" means parallel to the $x z$-plane.)
Let \mathcal{D} a skewed cylinder (also called an oblique cylinder, please "google" it) which has central axis the line where $y=x$ and $z=0$, and has perpendicular height 4 , with the top face of \mathcal{D} the horizontal radius 1 disk centered at $\langle 4,4,0\rangle$ and the bottom face of \mathcal{D} the horizontal radius 1 disk centered at $\langle 0,0,0\rangle$.
a. Draw a picture of D.
b. Give a $4 \times$ matrix M so that M represents the affine transformation sending \mathcal{C} to \mathcal{D}.
2. Let B be the transformation $\langle x, y, z\rangle \mapsto\left\langle\frac{1+x}{1-y}-1,0, \frac{z}{1-y}\right\rangle$. Give a 4×4 matrix which represents this transformation over homogeneous coordinates. (When $0<y<1, B$ give the transformation for a shadow cast from a light at $\langle-1,1,0\rangle$ onto the plane $y=0$. You do not need to use this fact to work the problem!)
3. A light source is placed at $\langle-10,0,0\rangle$ and it casts shadows onto the $y z$-plane P defined by $x=0$. The $y z$-plane is like an infinite wall.

When $\langle x, y, z\rangle$ is a point in \mathbb{R}^{3} with $-10<x \leq 0$, define $A(\langle x, y, z\rangle)$ to be the position of the shadow of the point on the $y z$-plane. For example, $A(\langle-5,1,2\rangle)=\langle 0,2,4\rangle$, and $A(\langle-8,1,2\rangle)=\langle 0,5,10\rangle$
a. Working in ordinary coordinates (not homogeneous) give the formula expressing the mapping $A(\langle x, y, z\rangle)=\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle$. That is, give formulas for $x^{\prime}, y^{\prime}, z^{\prime}$ in terms of x, y, z.
b. Give a 4×4-matrix that represents the transformation A over homogeneous coordinates.

