Math 155A — Computer Graphics — Winter 2019 Homework #3 — Due Wednesday, February 20, 9:00pm Hand in via Gradescope — Use separate pages for each problem.

- 1. Let $h(r) = 1 r^2$ define a surface of revolution $\mathbf{f}(r, \theta)$ by revolving the graph of *h* around the *y*-axis. Give the formula for a point $\mathbf{f}(\theta, r)$ on the surface of rotation. Also give a formula for a normal vector (not necessarily a unit vector) at that point on the surface of rotation. Your normal vector should be pointing generally upward.
- **2.** Let S be the paraboloid surface

$$S = \{ \langle x, y, z \rangle : y = 1 - x^2 - z^2 \}.$$
 (1)

Use the gradient method to give a formula $\mathbf{n} = \mathbf{n}(x, y, z)$ for a vector normal to S at a point $\langle x, y, z \rangle$ on S. The vector \mathbf{n} should be pointing generally upward.

Does your answer agree with the answer to the previous problem? If so, how? If not, why not?

3. A smooth surface S in \mathbb{R}^3 is transformed by the linear transformation $f : \mathbb{R}^3 \to \mathbb{R}^3$ represented by the matrix

$$N = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & 4 & 0 \end{pmatrix}$$

to form the surface f(S). Give a 3×3 matrix M such that whenever **n** is normal to S at a point **x** on S, then the vector $\mathbf{m} = M\mathbf{n}$ is normal to the point $f(\mathbf{x})$ on the surface f(S). [Hint: It is not difficult to invert N.]

- 4. The upper half of a hyperboloid \mathcal{H} is specified by the equation $y = \sqrt{1 + x^2 + 2z^2}$. Equivalently, $\mathcal{H} = \{ \langle x, y, z \rangle : y^2 = 1 + x^2 + 2z^2, y \ge 0 \}.$
 - (a) Draw a rough sketch of the hyperboloid \mathcal{H} .
 - (b) Suppose $\langle x, y, z \rangle$ is a point on \mathcal{H} . Give a formula for a vector normal to \mathcal{H} at the point $\langle x, y, z \rangle$, using crossproducts of partial derivatives). Your vector need not be a unit vector, but it should point downward from the surface (so as to be outward facing for a viewer placed at the origin).