1. Let \(h(r) = 1 - r^2 \) define a surface of revolution \(f(r, \theta) \) by revolving the graph of \(h \) around the \(y \)-axis. Give the formula for a point \(f(\theta, r) \) on the surface of rotation. Also give a formula for a normal vector (not necessarily a unit vector) at that point on the surface of rotation. Your normal vector should be pointing generally upward.

2. Let \(S \) be the paraboloid surface

\[
S = \{ \langle x, y, z \rangle : y = 1 - x^2 - z^2 \}.
\]

Use the gradient method to give a formula \(n = n(x, y, z) \) for a vector normal to \(S \) at a point \(\langle x, y, z \rangle \) on \(S \). The vector \(n \) should be pointing generally upward.

Does your answer agree with the answer to the previous problem? If so, how? If not, why not?

3. A smooth surface \(S \) in \(\mathbb{R}^3 \) is transformed by the linear transformation \(f : \mathbb{R}^3 \to \mathbb{R}^3 \) represented by the matrix

\[
N = \begin{pmatrix}
2 & 0 & 0 \\
0 & 0 & \frac{1}{2} \\
0 & 4 & 0
\end{pmatrix}
\]

to form the surface \(f(S) \). Give a \(3 \times 3 \) matrix \(M \) such that whenever \(n \) is normal to \(S \) at a point \(\mathbf{x} \) on \(S \), then the vector \(\mathbf{m} = M \mathbf{n} \) is normal to the point \(f(\mathbf{x}) \) on the surface \(f(S) \). [Hint: It is not difficult to invert \(N \).]

4. The upper half of a hyperboloid \(\mathcal{H} \) is specified by the equation \(y = \sqrt{1 + x^2 + 2z^2} \).
Equivalently, \(\mathcal{H} = \{ \langle x, y, z \rangle : y^2 = 1 + x^2 + 2z^2, y \geq 0 \} \).

(a) Draw a rough sketch of the hyperboloid \(\mathcal{H} \).

(b) Suppose \(\langle x, y, z \rangle \) is a point on \(\mathcal{H} \). Give a formula for a vector normal to \(\mathcal{H} \) at the point \(\langle x, y, z \rangle \), using crossproducts of partial derivatives). Your vector need not be a unit vector, but it should point downward from the surface (so as to be outward facing for a viewer placed at the origin).