Math 155A - Computer Graphics - Winter 2019
Homework \#3 - Due Wednesday, February 20, 9:00pm
Hand in via Gradescope - Use separate pages for each problem.

1. Let $h(r)=1-r^{2}$ define a surface of revolution $\mathbf{f}(r, \theta)$ by revolving the graph of h around the y-axis. Give the formula for a point $\mathbf{f}(\theta, r)$ on the surface of rotation. Also give a formula for a normal vector (not necessarily a unit vector) at that point on the surface of rotation. Your normal vector should be pointing generally upward.
2. Let S be the paraboloid surface

$$
\begin{equation*}
S=\left\{\langle x, y, z\rangle: y=1-x^{2}-z^{2}\right\} . \tag{1}
\end{equation*}
$$

Use the gradient method to give a formula $\mathbf{n}=\mathbf{n}(x, y, z)$ for a vector normal to S at a point $\langle x, y, z\rangle$ on S. The vector \mathbf{n} should be pointing generally upward.
Does your answer agree with the answer to the previous problem? If so, how? If not, why not?
3. A smooth surface S in \mathbb{R}^{3} is transformed by the linear transformation $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ represented by the matrix

$$
N=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & \frac{1}{2} \\
0 & 4 & 0
\end{array}\right)
$$

to form the surface $f(S)$. Give a 3×3 matrix M such that whenever \mathbf{n} is normal to S at a point \mathbf{x} on S, then the vector $\mathbf{m}=M \mathbf{n}$ is normal to the point $f(\mathbf{x})$ on the surface $f(S)$. [Hint: It is not difficult to invert N.]
4. The upper half of a hyperboloid \mathcal{H} is specified by the equation $y=\sqrt{1+x^{2}+2 z^{2}}$.

Equivalently, $\mathcal{H}=\left\{\langle x, y, z\rangle: y^{2}=1+x^{2}+2 z^{2}, y \geq 0\right\}$.
(a) Draw a rough sketch of the hyperboloid \mathcal{H}.
(b) Suppose $\langle x, y, z\rangle$ is a point on \mathcal{H}. Give a formula for a vector normal to \mathcal{H} at the point $\langle x, y, z\rangle$, using crossproducts of partial derivatives). Your vector need not be a unit vector, but it should point downward from the surface (so as to be outward facing for a viewer placed at the origin).

