Math 155A - Computer Graphics - Winter 2019
 Homework \#4 - Due Wednesday, February 27, 9:00pm
 Hand in via Gradescope - Use separate pages for each problem.

1. Let $\mathbf{x}_{1}=\langle-1,0\rangle$ and $\mathbf{x}_{2}=\langle 2,1\rangle$. Let α control the linear interpolation (and linear extrapolation) from \mathbf{x}_{1} to \mathbf{x}_{2} by $\operatorname{LERP}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \alpha\right)$.
(a) What points are obtained with α equal to $-2,-1,0, \frac{1}{10}, \frac{1}{3}, \frac{1}{2}, 1,1 \frac{1}{2}$ and 2? What value of α gives the point $\left\langle 1, \frac{2}{3}\right\rangle$? The point $\langle 8,3\rangle$? Graph your answers.
(b) What point \mathbf{u} on the line containin \mathbf{x}_{1} and \mathbf{x}_{2} is the closest to the origin? Find the value α such that $\mathbf{u}=\operatorname{LERP}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \alpha\right)$.
(c) Suppose the values for $f\left(\mathbf{x}_{1}\right)=-3$ and $f\left(\mathbf{x}_{2}\right)=3$ have been set, and we wish to set other values for $f(\mathbf{z})$ by linear interpolation/extrapolation. What will this set $f\left(\left\langle 1, \frac{2}{3}\right\rangle\right)$ equal to?
2. Let $\mathbf{x}=\langle 0,0\rangle, \mathbf{y}=\langle 2,3\rangle$, and $\mathbf{z}=\langle 3,1\rangle$ in \mathbb{R}^{2}. Determine the points represented by the following sets of barycentric coordinates.
a. $\alpha=0, \beta=1, \gamma=0$.
b. $\alpha=\frac{2}{3}, \beta=\frac{1}{3}, \gamma=0$.
c. $\alpha=\frac{1}{3}, \beta=\frac{1}{3}, \gamma=\frac{1}{3}$.
d. $\alpha=\frac{4}{5}, \beta=\frac{1}{10}, \gamma=\frac{1}{10}$.
e. $\alpha=\frac{4}{3}, \beta=\frac{2}{3}, \gamma=-1$.

Graph your answers along with the triangle formed by \mathbf{x}, \mathbf{y}, and \mathbf{z}.
3. Let, again, $\mathbf{x}=\langle 0,0\rangle, \mathbf{y}=\langle 2,3\rangle$, and $\mathbf{z}=\langle 3,1\rangle$. Determine the barycentric coordinates of the following points:
a. $\mathbf{u}_{1}=\langle 2,3\rangle$.
b. $\mathbf{u}_{2}=\left\langle 1 \frac{1}{3}, 2\right\rangle$.
c. $\mathbf{u}_{3}=\left\langle\frac{3}{2}, \frac{3}{2}\right\rangle$.
d. $\mathbf{u}_{4}=\langle 1,0\rangle$.

