Math 155A — Computer Graphics — Winter 2019 Homework #4 — Due Wednesday, February 27, 9:00pm Hand in via Gradescope — Use separate pages for each problem.

- **1.** Let $\mathbf{x}_1 = \langle -1, 0 \rangle$ and $\mathbf{x}_2 = \langle 2, 1 \rangle$. Let α control the linear interpolation (and linear extrapolation) from \mathbf{x}_1 to \mathbf{x}_2 by LERP $(\mathbf{x}_1, \mathbf{x}_2, \alpha)$.
 - (a) What points are obtained with α equal to -2, -1, 0, $\frac{1}{10}$, $\frac{1}{3}$, $\frac{1}{2}$, 1, $1\frac{1}{2}$ and 2? What value of α gives the point $\langle 1, \frac{2}{3} \rangle$? The point $\langle 8, 3 \rangle$? Graph your answers.
 - (b) What point **u** on the line containin \mathbf{x}_1 and \mathbf{x}_2 is the closest to the origin? Find the value α such that $\mathbf{u} = \text{LERP}(\mathbf{x}_1, \mathbf{x}_2, \alpha)$.
 - (c) Suppose the values for $f(\mathbf{x}_1) = -3$ and $f(\mathbf{x}_2) = 3$ have been set, and we wish to set other values for $f(\mathbf{z})$ by linear interpolation/extrapolation. What will this set $f(\langle 1, \frac{2}{3} \rangle)$ equal to?
- **2.** Let $\mathbf{x} = \langle 0, 0 \rangle$, $\mathbf{y} = \langle 2, 3 \rangle$, and $\mathbf{z} = \langle 3, 1 \rangle$ in \mathbb{R}^2 . Determine the points represented by the following sets of barycentric coordinates.
 - a. $\alpha = 0, \beta = 1, \gamma = 0.$ b. $\alpha = \frac{2}{3}, \beta = \frac{1}{3}, \gamma = 0.$ c. $\alpha = \frac{1}{3}, \beta = \frac{1}{3}, \gamma = \frac{1}{3}.$ d. $\alpha = \frac{4}{5}, \beta = \frac{1}{10}, \gamma = \frac{1}{10}.$ e. $\alpha = \frac{4}{3}, \beta = \frac{2}{3}, \gamma = -1.$

Graph your answers along with the triangle formed by \mathbf{x} , \mathbf{y} , and \mathbf{z} .

3. Let, again, $\mathbf{x} = \langle 0, 0 \rangle$, $\mathbf{y} = \langle 2, 3 \rangle$, and $\mathbf{z} = \langle 3, 1 \rangle$. Determine the barycentric coordinates of the following points:

