1. Let \(\mathbf{x}_1 = \langle -1, 0 \rangle \) and \(\mathbf{x}_2 = \langle 2, 1 \rangle \). Let \(\alpha \) control the linear interpolation (and linear extrapolation) from \(\mathbf{x}_1 \) to \(\mathbf{x}_2 \) by \(\text{Lerp}(\mathbf{x}_1, \mathbf{x}_2, \alpha) \).

(a) What points are obtained with \(\alpha \) equal to \(-2, -1, 0, \frac{1}{10}, \frac{1}{3}, \frac{1}{2}, 1, 1\frac{1}{2} \) and \(2 \)? What value of \(\alpha \) gives the point \(\langle 1, \frac{2}{3} \rangle \)? The point \(\langle 8, 3 \rangle \)? Graph your answers.

(b) What point \(\mathbf{u} \) on the line containing \(\mathbf{x}_1 \) and \(\mathbf{x}_2 \) is the closest to the origin? Find the value \(\alpha \) such that \(\mathbf{u} = \text{Lerp}(\mathbf{x}_1, \mathbf{x}_2, \alpha) \).

(c) Suppose the values for \(f(\mathbf{x}_1) = -3 \) and \(f(\mathbf{x}_2) = 3 \) have been set, and we wish to set other values for \(f(\mathbf{z}) \) by linear interpolation/extrapolation. What will this set \(f(\langle 1, \frac{2}{3} \rangle) \) equal to?

2. Let \(\mathbf{x} = \langle 0, 0 \rangle \), \(\mathbf{y} = \langle 2, 3 \rangle \), and \(\mathbf{z} = \langle 3, 1 \rangle \) in \(\mathbb{R}^2 \). Determine the points represented by the following sets of barycentric coordinates.

 a. \(\alpha = 0, \beta = 1, \gamma = 0 \).
 b. \(\alpha = \frac{2}{3}, \beta = \frac{1}{3}, \gamma = 0 \).
 c. \(\alpha = \frac{1}{3}, \beta = \frac{1}{3}, \gamma = \frac{1}{3} \).
 d. \(\alpha = \frac{1}{5}, \beta = \frac{1}{10}, \gamma = \frac{1}{10} \).
 e. \(\alpha = \frac{4}{5}, \beta = \frac{2}{5}, \gamma = -1 \).

Graph your answers along with the triangle formed by \(\mathbf{x}, \mathbf{y}, \) and \(\mathbf{z} \).

3. Let, again, \(\mathbf{x} = \langle 0, 0 \rangle \), \(\mathbf{y} = \langle 2, 3 \rangle \), and \(\mathbf{z} = \langle 3, 1 \rangle \). Determine the barycentric coordinates of the following points:

 a. \(\mathbf{u}_1 = \langle 2, 3 \rangle \).
 b. \(\mathbf{u}_2 = \langle 1\frac{1}{2}, 2 \rangle \).
 c. \(\mathbf{u}_3 = \langle \frac{3}{2}, \frac{3}{2} \rangle \).
 d. \(\mathbf{u}_4 = \langle 1, 0 \rangle \).