1. Why is it customary to use the same specular exponent for all wavelengths? What might a specular highlight look like if different wavelengths had different specular exponents?

2. Let \(x = \langle 0, 0 \rangle, \ y = \langle 4, 0 \rangle, \ z = \langle 5, 3 \rangle, \) and \(w = \langle 0, 2 \rangle, \) as shown in the figure. For each of the following values of \(\alpha \) and \(\beta, \) what point is obtained by bilinear interpolation? Draw a copy of the quadrilateral, and show the approximate locations of your answers. (The value \(\alpha \) gives the right-to-left direction; \(\beta \) the bottom-to-top direction.)
 a. \(\alpha = 1 \) and \(\beta = 0. \)
 b. \(\alpha = \frac{1}{3} \) and \(\beta = 1. \)
 c. \(\alpha = \frac{1}{2} \) and \(\beta = \frac{1}{4}. \)
 d. \(\alpha = \frac{2}{3} \) and \(\beta = \frac{1}{3}. \)

3. A function \(g : [0,1] \times [0,1] \rightarrow \mathbb{R}^3 \) is defined by setting \(g(\langle 0,0 \rangle) = \langle 2,0,0 \rangle, \) \(g(\langle 1,0 \rangle) = \langle 0,1,0 \rangle, \) \(g(\langle 0,1 \rangle) = \langle 0,2,4 \rangle, \) \(g(\langle 1,1 \rangle) = \langle 2,2,0 \rangle, \) and then using bilinear interpolation to extend the domain of \(g \) to the square \([0,1] \times [0,1].\) What is \(g(\frac{1}{4},0)? \) \(g(\frac{1}{4},1)? \) \(g(\frac{1}{4}, \frac{1}{2})? \)

4. Suppose a surface patch in \(\mathbb{R}^3 \) is defined by bilinearly interpolating from four vertices. Derive the following formulas for the partial derivatives of \(u: \)

\[
\frac{\partial u}{\partial \alpha} = (1 - \beta)(y - x) + \beta(z - w)
\]

\[
\frac{\partial u}{\partial \beta} = (1 - \alpha)(w - x) + \alpha(z - y).
\]

In addition, give the formula for the normal vector to the patch at a point \(u = u(\alpha, \beta). \)
5. This problem is about points in \(\mathbb{R}^2 \), and their homogeneous representations; and how they act under linear coordinates. Let

\[x = \langle 0, 0, 2 \rangle \quad \text{and} \quad y = \langle 4, 8, 4 \rangle \]

be homogeneous representations for the following two vectors in \(\mathbb{R}^2 \):

\[a = \langle 0, 0 \rangle \quad \text{and} \quad b = \langle 1, 2 \rangle. \]

(a) What point \(u \) in \(\mathbb{R}^2 \) is equal to \(\frac{1}{4}a + \frac{3}{4}b \)?

(b) What point \(w \) in \(\mathbb{R}^2 \) is represented by (in homogeneous representation)

\[\frac{1}{7}x + \frac{2}{7}y \]?

(c) Give values \(\alpha \) and \(\beta \) so that \(\alpha x + \beta y \) is an affine combination giving a homogeneous representation of the point \(u \) calculated in part (a).