Math 155A - Computer Graphics - Winter 2019
 Homework \#5 - Due Tuesday, March 5, 4:00pm

Hand in via Gradescope - Use separate pages for each problem.

1. Why is it customary to use the same specular exponent for all wavelengths? What might a specular highlight look like if different wavelengths had different specular exponents?
2. Let $\mathbf{x}=\langle 0,0\rangle, \mathbf{y}=\langle 4,0\rangle, \mathbf{z}=\langle 5,3\rangle$, and $\mathbf{w}=\langle 0,2\rangle$, as shown in the figure. For each of the following values of α and β, what point is obtained by bilinear interpolation? Draw a copy of the quadrilaterial, and show the approximate locations of your answers. (The value α gives the right-to-left direction; β the bottom-to-top direction.)
a. $\alpha=1$ and $\beta=0$.
b. $\alpha=\frac{1}{3}$ and $\beta=1$.
c. $\alpha=\frac{1}{2}$ and $\beta=\frac{1}{4}$.
d. $\alpha=\frac{2}{3}$ and $\beta=\frac{1}{3}$.

3. A function $g:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}$ is defined by setting $g(\langle 0,0\rangle)=\langle 2,0,0\rangle$, $g(\langle 1,0\rangle)=\langle 0,1,0\rangle, g(\langle 0,1\rangle)=\langle 0,2,4\rangle, g(\langle 1,1\rangle)=\langle 2,2,0\rangle$, and then using bilinear interpolation to extend the domain of g to the square $[0,1] \times[0,1]$. What is $g\left(\frac{1}{4}, 0\right) ? g\left(\frac{1}{4}, 1\right) ? g\left(\frac{1}{4}, \frac{1}{2}\right) ?$
4. Suppose a surface patch in \mathbb{R}^{3} is defined by bilinearly interpolating from four vertices. Derive the following formulas for the partial derivatives of \mathbf{u} :

$$
\begin{aligned}
& \frac{\partial \mathbf{u}}{\partial \alpha}=(1-\beta)(\mathbf{y}-\mathbf{x})+\beta(\mathbf{z}-\mathbf{w}) \\
& \frac{\partial \mathbf{u}}{\partial \beta}=(1-\alpha)(\mathbf{w}-\mathbf{x})+\alpha(\mathbf{z}-\mathbf{y})
\end{aligned}
$$

In addition, give the formula for the normal vector to the patch at a point $\mathbf{u}=\mathbf{u}(\alpha, \beta)$.
5. This problem is about points in \mathbb{R}^{2}, and their homogeneous representations; and how they act under linear coordinates. Let

$$
\mathbf{x}=\langle 0,0,2\rangle \quad \text { and } \quad \mathbf{y}=\langle 4,8,4\rangle
$$

be homogeneous representations for the following two vectors in \mathbb{R}^{2} :

$$
\mathbf{a}=\langle 0,0\rangle \quad \text { and } \quad \mathbf{b}=\langle 1,2\rangle .
$$

(a) What point \mathbf{u} in \mathbb{R}^{2} is equal to $\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}$?
(b) What point \mathbf{w} in \mathbb{R}^{2} is represented by (in homogeneous representation) $\frac{1}{4} \mathbf{x}+\frac{3}{4} \mathbf{y}$?
(c) Give values α and β so that $\alpha \mathbf{x}+\beta \mathbf{y}$ is an affine combination giving a homogeneous representation of the point \mathbf{u} calculated in part (a).

