Math 155A - Computer Graphics - Winter 2019
 Homework \#6 - Due Thursday, March 14, 9:00pm

Hand in via Gradescope - Use separate pages for each problem.

1. Suppose a degree three Bézier curve $\mathbf{q}(u)$ in \mathbb{R}^{2} has control points $\mathbf{p}_{0}=\langle-1,0\rangle$, $\mathbf{p}_{1}=\langle 0,-2\rangle, \mathbf{p}_{2}=\langle 3,0\rangle$, and $\mathbf{p}_{2}=\langle 1,3\rangle$. Draw a graph showing these three points, the control polygon, and a sketch of $\mathbf{q}(u)$ for $0 \leq u \leq 1$. Your sketch should show the starting and ending positions and tangencies clearly. What are $\mathbf{q}^{\prime}(0)$ and $\mathbf{q}^{\prime}(1)$ equal to?
2. Suppose a particle needs to be animated so that at time $t=0$ it is at $\langle 0,0\rangle$ with velocity $\langle 0,3\rangle$, and at time $t=1$ it is at $\langle 0,3\rangle$ with velocity $\langle-2,0\rangle$. Express the position of the particle, as a function of time t, in terms of a degree three Bézier curve. What are the control points for the Bézier curve?
3. Repeat problem 2 with the same position and velocity at time $t=0$ and the same position at time $t=1$, but with the ending velocity at time $t=1$ equal to $\mathbf{0}=\langle 0,0\rangle$.
