Math 155A — Computer Graphics — Winter 2019 Homework #7 — Due Wednesday, March 20, 9:00pm

Hand in via Gradescope — Use separate pages for each problem.

A particle moving in R (on a line) has position given by a cubic function q(t). At time t = 0 it is at position q(0) = 1 and has initial velocity q'(0) = 3. At time t = 1 it is at q(1) = 8 and has velocity q'(1) = −6. Express q(u) as a Bézier "curve" in R by giving its four control points.

The convex hull property can be used to bound the position q(t) for $t \in [0, 1]$. What bounds does this give? (Do not find the actual maximum, just give the upper bound that comes from the convex hull property.)

Express q(u) as a degree three polynomial of t.

2 A degree three Bézier curve in \mathbb{R}^2 has control points $\mathbf{p}_0 = \langle 0, 0 \rangle$, $\mathbf{p}_1 = \langle 1, -2 \rangle$, $\mathbf{p}_2 = \langle 1, 3 \rangle$, and $\mathbf{p}_2 = \langle 3, 0 \rangle$.

Draw a graph of the curve, and the results of (one round of) recursive subdivision with $u = \frac{1}{2}$. Show your work clearly in your sketch of the curve. What is $q(\frac{1}{2})$? (This is essentially the same as using the de Casteljau algorithm to find $q(\frac{1}{2})$.)

The second half of the curve q(u) where $u \in [\frac{1}{2}, 1]$ is also a degree three Bézier curve. What are its control points?

3. (Catmull-Rom interpolation.) Let $\mathbf{p}_0 = \langle 0, -2 \rangle$. $\mathbf{p}_1 = \langle 2, 0 \rangle$, $\mathbf{p}_2 = \langle 2, 1 \rangle$, $\mathbf{p}_3 = \langle 4, 1 \rangle$, and $\mathbf{p}_4 = \langle 4, 0 \rangle$.

Sketch the Catmull-Rom curve $\mathbf{q}(u)$ specified by these points. What is its starting point? What is its ending point? What is the slope of $\mathbf{q}(u)$ at each interpolated point \mathbf{p}_i ?

The subcurve of \mathbf{q} that joins \mathbf{p}_1 and \mathbf{p}_2 is a degree Bézier curve. What are its control points?