Math 155A - Computer Graphics - Winter 2019 Homework \#7- Due Wednesday, March 20, 9:00pm

Hand in via Gradescope - Use separate pages for each problem.

1. A particle moving in \mathbb{R} (on a line) has position given by a cubic function $q(t)$. At time $t=0$ it is at position $q(0)=1$ and has initial velocity $q^{\prime}(0)=3$. At time $t=1$ it is at $q(1)=8$ and has velocity $q^{\prime}(1)=-6$. Express $q(u)$ as a Bézier "curve" in \mathbb{R} by giving its four control points.
The convex hull property can be used to bound the position $q(t)$ for $t \in[0,1]$. What bounds does this give? (Do not find the actual maximum, just give the upper bound that comes from the convex hull property.)
Express $q(u)$ as a degree three polynomial of t.
2 A degree three Bézier curve in \mathbb{R}^{2} has control points $\mathbf{p}_{0}=\langle 0,0\rangle, \mathbf{p}_{1}=\langle 1,-2\rangle$, $\mathbf{p}_{2}=\langle 1,3\rangle$, and $\mathbf{p}_{2}=\langle 3,0\rangle$.
Draw a graph of the curve, and the results of (one round of) recursive subdivision with $u=\frac{1}{2}$. Show your work clearly in your sketch of the curve. What is $q\left(\frac{1}{2}\right)$? (This is essentially the same as using the de Casteljau algorithm to find $q\left(\frac{1}{2}\right)$.)
The second half of the curve $q(u)$ where $u \in\left[\frac{1}{2}, 1\right]$ is also a degree three Bézier curve. What are its control points?
2. (Catmull-Rom interpolation.) Let $\mathbf{p}_{0}=\langle 0,-2\rangle . \quad \mathbf{p}_{1}=\langle 2,0\rangle, \mathbf{p}_{2}=\langle 2,1\rangle$, $\mathbf{p}_{3}=\langle 4,1\rangle$, and $\mathbf{p}_{4}=\langle 4,0\rangle$.
Sketch the Catmull-Rom curve $\mathbf{q}(u)$ specified by these points. What is its starting point? What is its ending point? What is the slope of $\mathbf{q}(u)$ at each interpolated point \mathbf{p}_{i} ?
The subcurve of \mathbf{q} that joins \mathbf{p}_{1} and \mathbf{p}_{2} is a degree Bézier curve. What are its control points?
