Math 155A - Computer Graphics - Winter 2019 - Quiz \# 7-March 4, 2019
name: Answer Key.
PID:

1. A function $\mathbf{p}(\alpha, \beta)$ is defined by letting $\mathbf{p}(\alpha, \beta)$ be the point with bilinear coordinates α and β for the $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}$ shown in the figure. (So, $\mathbf{p}(0,0)=\mathbf{x}$ and $\mathbf{p}(1,0)=\mathbf{y}$, etc.)
a. Calculate $\mathbf{u}=\mathbf{p}\left(1, \frac{1}{3}\right)$ (that is, calculate its x, y-coordinates.
b. Show u's approximate location on the figure.
c. Let $\mathbf{v}=\mathbf{p}\left(\frac{1}{2}, \frac{9}{10}\right)$. Show its approximate
 location on the figure. (Do not calculater \mathbf{v} 's x, y-coordinates.)
(a) This problem is simplified since $\alpha=1$. Thus.
(b) $\stackrel{\rightharpoonup}{u}$ is on right hard edge (since $\alpha=1$), whe-thind of the
(c) See figure.
2. Work with homogeneous coordinates representing points in \mathbb{R}^{2}. Let $\mathbf{x}=\langle-4,0,2\rangle$ and $\mathbf{y}=\langle 2,0,1\rangle$.
a. What two points \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are represented by the homogeneous coordinates \mathbf{x} and \mathbf{y} ?

$$
\langle-2,0\rangle \text { and }\langle 2,0\rangle
$$

b. What is $\mathbf{z}=\operatorname{Lerp}\left(\mathbf{x}, \mathbf{y}, \frac{1}{2}\right)$? Give your answer as a 3 -vector.

$$
\vec{z}=(1-1 / 2) \vec{x}+\frac{1}{2} \vec{y}=\left\langle-1,0, \frac{3}{2}\right\rangle
$$

c. What point in \mathbb{R}^{2} has \mathbf{z} as a homogeneous representation? Is this the midpoint of \mathbf{u} and \mathbf{v} ?

$$
\overrightarrow{2} \text { represents }\left\langle\frac{-2}{3}, 0\right\rangle \text { in } \mathbb{R}^{2} \text {. }
$$

$$
\text { This is rot the midpoint of } \vec{a} \text { \& } \vec{v} \text {. }
$$

