Math 155A - Computer Graphics - Winter 2019 - Quiz #7 - March 4, 2019 NAME: Answer Key.

PID:

- **1.** A function $\mathbf{p}(\alpha, \beta)$ is defined by letting $\mathbf{p}(\alpha, \beta)$ be the point with bilinear coordinates α and β for the $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}$ shown in the figure. (So, $\mathbf{p}(0,0) = \mathbf{x}$ and $\mathbf{p}(1,0) = \mathbf{y}$, etc.)
 - a. Calculate $\mathbf{u} = \mathbf{p}(1, \frac{1}{3})$ (that is, calculate its *x*, *y*-coordinates.
 - b. Show **u**'s approximate location on the figure.
 - c. Let $\mathbf{v} = \mathbf{p}(\frac{1}{2}, \frac{9}{10})$. Show its *approximate* location on the figure. (Do not calculates \mathbf{v} 's x, y-coordinates.)

- 2. Work with homogeneous coordinates representing points in \mathbb{R}^2 . Let $\mathbf{x} = \langle -4, 0, 2 \rangle$ and $\mathbf{y} = \langle 2, 0, 1 \rangle$.
 - a. What two points \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented by the homogeneous coordinates \mathbf{x} and \mathbf{y} ?

b. What is $\mathbf{z} = Lerp(\mathbf{x}, \mathbf{y}, \frac{1}{2})$? Give your answer as a 3-vector.

$$\vec{z} = (1 - \frac{1}{2})\vec{x} + \frac{1}{2}\vec{y} = \langle -1, 0, \frac{3}{2} \rangle$$

c. What point in \mathbb{R}^2 has \mathbf{z} as a homogeneous representation? Is this the midpoint of \mathbf{u} and \mathbf{v} ?

$$\vec{z}$$
 represents $\langle \frac{-2}{3}, 0 \rangle$ in \mathbb{R}^{L} .
This is not the midpoint of $\vec{u} \in \vec{v}$