1. A hyperboloid \mathcal{H} is defined by $y = 3x^2 - 4z^2$: it can also be defined as a parametrically defined surface using

$$f(u, v) = (u, 3u^2 - 4v^2, v).$$

Let (x, y, z) be a point on \mathcal{H}. Give a formula $\mathbf{n} = \mathbf{n}(x, y, z)$ for a vector normal to \mathcal{H} at (x, y, z). Your formula should be in terms of x, y, z. For full credit, choose the direction of \mathbf{n} so that it faces upward from the surface. (However, \mathbf{n} does not need to be a unit vector.)