1. Let \(h(r) = \sqrt{1 + r^2} \) define a surface of revolution \(f(r, \theta) \) by revolving the graph of \(h \) around the \(y \)-axis. Give the formula for a point \(f(\theta, r) \) on the surface of rotation. Also give a formula for a normal vector (not necessarily a unit vector) at that point on the surface of rotation. Your normal vector should be pointing generally upward. Your answers should be stated as functions of \(r \) and \(\theta \).

2. Let \(S \) be the hyperboloid surface defined as a level surface

\[
S = \{ (x, y, z) : y = \sqrt{1 + x^2 + z^2} \}. \tag{1}
\]

Use the level set surface (gradient) method to give a formula \(n = n(x, y, z) \) for a vector normal to \(S \) at a point \((x, y, z) \) on \(S \). [Hint: it will be easier if you use the equivalent definition: \(S = \{ (x, y, z) : y^2 = 1 + x^2 + z^2, \ y \geq 0 \} \). The vector \(n \) should be pointing generally upward. Your answer should be given as a function of \(x, y, z \).

The surface \(S \) is the same as the surface of rotation in Problem 1. Does your answer agree with the answer to Problem 1? If so, how? If not, why not?

3. Let \(S \) be the hyperboloid surface (1) of the previous exercise. Let \(A : \mathbb{R}^3 \to \mathbb{R}^3 \) be the linear transformation with \(3 \times 3 \) matrix representation

\[
M = \begin{pmatrix}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Note that \(A \) is a shearing. What is \((M^{-1})^T\)? Suppose \((x, y, z) \) is a point on the surface \(S \). Its normal vector \(n(x, y, z) \) was already computed in the previous exercise. Give a formula for a vector \(m = m(x, y, z) \) normal to the transformed surface \(A(S) \) at the transformed point \(A((x, y, z)) \). \(m \) does not need to be a unit vector.

4. Let \(S' \) be the surface defined be \(y = 3 + x - x^2 z \). For \((x, y, z) \) a point on \(S' \), give a formula for a vector normal to the surface at \((x, y, z) \). Orient the vector so it is point upward (positive \(y \) component).

You may use either the crossproduct of partial derivatives method, or the gradient (level set) method. (Hand in only one solution, but you should know how to do both methods!)