1. Let \(\mathbf{x}_1 = \langle -2, 0 \rangle \) and \(\mathbf{x}_2 = \langle 4, 1 \rangle \). Let \(\alpha \) control the linear interpolation (and linear extrapolation) from \(\mathbf{x}_1 \) to \(\mathbf{x}_2 \) by \(\text{Lerp}(\mathbf{x}_1, \mathbf{x}_2, \alpha) \).

 (a) What points are obtained with \(\alpha \) equal to \(-2, -1, 0, \frac{1}{10}, \frac{1}{3}, \frac{1}{2}, 1, \frac{11}{2} \) and \(2 \)? What value of \(\alpha \) gives the point \(\langle 2, \frac{2}{3} \rangle \)? The point \(\langle 16, 3 \rangle \)? Graph your answers.

 (b) What point \(u \) on the line containing \(\mathbf{x}_1 \) and \(\mathbf{x}_2 \) is the closest to the origin? Find the value \(\alpha \) such that \(u = \text{Lerp}(\mathbf{x}_1, \mathbf{x}_2, \alpha) \).

 (c) Suppose the values for \(f(\mathbf{x}_1) = -3 \) and \(f(\mathbf{x}_2) = 3 \) have been set, and we wish to set other values for \(f(z) \) by linear interpolation/extrapolation. What will this set \(f(\langle 2, \frac{2}{3} \rangle) \) equal to?

2. Let \(\mathbf{u} = \text{Lerp}(\mathbf{x}, \mathbf{y}, \alpha) \).

 (a) For what values of \(\alpha \) must \(\mathbf{u} \) be a linear combination of \(\mathbf{x} \) and \(\mathbf{y} \)?

 (b) For what values of \(\alpha \) must \(\mathbf{u} \) be an affine combination of \(\mathbf{x} \) and \(\mathbf{y} \)?

 (c) For what values of \(\alpha \) must \(\mathbf{u} \) be a weighted average of \(\mathbf{x} \) and \(\mathbf{y} \)?

3. Let \(\mathbf{x} = \langle 0, 1 \rangle \), \(\mathbf{y} = \langle 2, 3 \rangle \), and \(\mathbf{z} = \langle 3, 0 \rangle \) in \(\mathbb{R}^2 \). Determine the points represented by the following sets of barycentric coordinates.

 a. \(\alpha = 0, \beta = 1, \gamma = 0 \).
 b. \(\alpha = \frac{2}{3}, \beta = \frac{1}{3}, \gamma = 0 \).
 c. \(\alpha = \frac{1}{3}, \beta = \frac{1}{3}, \gamma = \frac{1}{3} \).
 d. \(\alpha = \frac{4}{5}, \beta = \frac{1}{10}, \gamma = \frac{1}{10} \).
 e. \(\alpha = \frac{4}{3}, \beta = \frac{2}{3}, \gamma = -1 \).

 Graph your answers along with the triangle formed by \(\mathbf{x} \), \(\mathbf{y} \), and \(\mathbf{z} \).

4. Let, again, \(\mathbf{x} = \langle 0, 1 \rangle \), \(\mathbf{y} = \langle 2, 3 \rangle \), and \(\mathbf{z} = \langle 3, 0 \rangle \). Determine the barycentric coordinates of the following points \(\mathbf{u}_1 - \mathbf{u}_4 \):

 a. \(\mathbf{u}_1 = \langle 2, 3 \rangle \).
 b. \(\mathbf{u}_2 = \langle 1\frac{1}{2}, 2\frac{1}{3} \rangle \).
 c. \(\mathbf{u}_3 = \langle \frac{3}{2}, \frac{3}{2} \rangle \).
 d. \(\mathbf{u}_4 = \langle 1, 0 \rangle \).

 The figure also show a point labelled \(\mathbf{u}_5 \). For the barycentric coordinates for \(\mathbf{u}_5 \): Which of \(\alpha, \beta, \gamma \) are positive? Which ones are negative? Which ones are zero?
5. Let \(\mathbf{x} = (0, 0) \), \(\mathbf{y} = (4, 0) \), \(\mathbf{z} = (5, 3) \), and \(\mathbf{w} = (0, 2) \), as shown in the figure. For each of the following values of \(\alpha \) and \(\beta \), what point is obtained by bilinear interpolation? (Give the coordinates of the points a.-d.) Then draw a copy of the quadrilateral, and show the approximate locations of your four answers. (The value \(\alpha \) gives the left-to-right direction; \(\beta \) the bottom-to-top direction.)

a. \(\alpha = 0 \) and \(\beta = 1 \).

b. \(\alpha = \frac{2}{3} \) and \(\beta = 1 \).

c. \(\alpha = \frac{1}{2} \) and \(\beta = \frac{3}{4} \).

d. \(\alpha = \frac{1}{3} \) and \(\beta = \frac{2}{3} \).

6. Suppose a surface patch \(\mathbf{u}(\alpha, \beta) \) in \(\mathbb{R}^3 \) is defined by bilinearly interpolating from four vertices. Derive the following formulas for the partial derivatives of \(\mathbf{u} \):

\[
\frac{\partial \mathbf{u}}{\partial \alpha} = (1 - \beta)(\mathbf{y} - \mathbf{x}) + \beta(\mathbf{z} - \mathbf{w}) = \text{Lerp}(\mathbf{y} - \mathbf{x}, \mathbf{z} - \mathbf{w}, \beta)
\]

\[
\frac{\partial \mathbf{u}}{\partial \beta} = (1 - \alpha)(\mathbf{w} - \mathbf{x}) + \alpha(\mathbf{z} - \mathbf{y}) = \text{Lerp}(\mathbf{w} - \mathbf{x}, \mathbf{z} - \mathbf{y}, \alpha).
\]

In addition, give the general formula for a normal vector to the patch at a point \(\mathbf{u} = \mathbf{u}(\alpha, \beta) \). (It does not need to be a unit vector.)