1. Let \(q(u) \) be a degree 2 Bezier curve with control points \(\langle 0, 0, 0 \rangle, \langle 3, 6, 0 \rangle, \) and \(\langle 6, -6, 0 \rangle \). Express \(q(u) \) as a degree three Bezier curve (by giving its control points). Also express \(q(u) \) as a degree four Bezier curve.

2. Suppose a degree 3 \(\times \) 2 Bezier patch with control points \(r_{i,j} \) is defined by

\[
q(u) = \sum_{i=0}^{3} \sum_{j=0}^{2} B^3_i(u)B^2_j(u)r_{i,j}.
\]

Express this patch as a degree 3 \(\times \) 3 Bezier patch with control points \(p_{i,j} \). Your answer should give formulas for the \(p_{i,j} \)'s in terms of the \(r_{i,j} \). Give a brief proof of the correctness of your answer. (Hint: use Theorem VII.8.)

3. Express the “right half” of the unit sphere,
\[
\{ \langle x, y, z \rangle : x \geq 0 \text{ and } x^2 + y^2 + z^2 = 1 \},
\]
as a single rational Bezier patch.

5. Exercise VII.20, page 186. (You may find it easier to first think about exercise VII.19 instead.)

7. (Linear interpolation in homogeneous coordinates.) Suppose \(w, v > 0 \). Let \(\langle wx, w \rangle \) and \(\langle vy, v \rangle \) be homogeneous representations of two points \(x \) and \(y \) in \(\mathbb{R}^n \). For \(0 \leq u \leq 1 \), define \(q(u) \) to be the point in \(\mathbb{R}^n \) represented in homogeneous coordinates by the \((n+1)\)-tuple

\[
\text{Lerp}(u, \langle wx, w \rangle, \langle vy, v \rangle).
\]

Evaluate the first derivative \(q'(u) \) of \(q(u) \). What are \(q'(0) \) and \(q'(1) \)? Can you express your answer in terms of \(w, v, \) and \(y-x \)? Does your answer agree with the case of ordinary linear interpolation where \(v = w = 1 \)?