Math 15A - Discrete Mathematics - Spring 1999
Midterm Exam — May 6 — Answer Key

You may use a single sheet of notes (double-sided, 8½ × 11 paper). You may not use the textbook or a calculator. There are 10 problems worth a total of 360 points. You have one hour and 15 minutes.

Before you begin, write your name & ID number on the cover page, and check that you have all ten problems in your exam.

Good luck!

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. (30 points) For each formula in the left column, find a logically equivalent formula in the right column.

 \begin{align*}
 \text{c} & \quad (p \rightarrow q) \lor (q \rightarrow p) \\
 \text{e} & \quad (p \rightarrow q) \land (q \rightarrow p) \\
 \text{c} & \quad p \rightarrow (q \rightarrow p) \\
 \text{f} & \quad \sim (q \rightarrow \sim p) \\
 \text{g} & \quad \sim (\sim p \rightarrow q)
 \end{align*}

 \begin{align*}
 \text{a} & \quad p \\
 \text{b} & \quad \sim p \\
 \text{c} & \quad p \rightarrow p \\
 \text{d} & \quad p \land \sim p \\
 \text{e} & \quad p \leftrightarrow q \\
 \text{f} & \quad p \land q \\
 \text{g} & \quad \text{None of the above}
 \end{align*}

2. (24 points) Convert the propositional formula

 \[p \rightarrow (q \rightarrow (r \leftrightarrow s)) \]

 into an equivalent formula which uses only the connectives \(\land, \lor \) and \(\sim \).

 ANSWER: \(\sim p \lor \sim q \lor (r \land s) \lor (\sim r \land \sim s) \).

 OTHER ANSWERS ARE POSSIBLE.

3. (36 points) Draw a Boolean circuit, using only AND, OR and NOT gates, which has three inputs \(x, y, \) and \(z \) and which outputs 1 (True) if and only if exactly one of its three inputs has value 1.

 ANSWER: I’ll give you the formula: from this it is easy to draw the circuit (by hand, if not by computer).

 \[\text{OR(AND(AND(x, NOT(y)), NOT(z)), AND(NOT(x), y, NOT(z))), AND(NOT(x), NOT(y), z))} \]
4. (42 points) Let $T(x, y)$ be the predicate “x trusts y”. Let $Y(x)$ be the predicate “x is young”, and $A(x)$ be the predicate “x is aged”. Let quantified variables in $(\forall x)$ and $(\exists y)$ range over all people. Express the following formally, using quantifiers, Boolean connectives and the three predicates $T(\cdot, \cdot)$, $Y(\cdot)$, $A(\cdot)$ (but do not use symbols for the set of young or aged people):

(a) Everyone trusts someone.
 ANS: $\forall x \exists y T(x, y)$

(b) No one trusts everyone.
 ANS: $\forall x \exists y \sim T(x, y)$

(c) There is person who is trusted by no one.
 ANS: $\exists x \forall y \sim T(y, x)$

(d) There is person who is trusted by no young people.
 ANS: $\exists x \forall y (Y(y) \to \sim T(y, x))$

(e) There is a person who is trusted by everyone, but who trusts no one.
 ANS: $\exists x ((\forall y T(y, x)) \land (\forall z \sim T(x, z)))$

(f) Some aged people trust no one.
 ANS: $\exists x (A(x) \land \forall y \sim T(x, y))$

(g) Some young people trust all aged people.
 ANS: $\exists x (Y(x) \land \forall y (A(y) \to T(x, y)))$

5. (36 points) Express the following assertions (semi-)formally. You may use quantifiers such as “\forall rational x”, “\exists positive integer y”, Boolean connections, and predicates such as “$x < y$”, “$x \leq y$”, “$x = y$”, “$x \neq y$”, $x \in \mathbb{Z}$, and the functions addition, subtraction, multiplication, division and square roots. Hints: These assertions should be expanded out into the appropriate definitions. Do not forget to include any necessary conditions such as “x is an integer”.

(a) x divides y.
 ANS: \exists integer q s.t. $(x \cdot q = y)$ (You may add $x = 0$ if you wish.)

(b) r is equal to $(x \mod d)$.
 ANS: $0 \leq r < d$ and \exists integer q s.t. $x = qd + r$.

(c) n equals $\lfloor x \rfloor$.
 ANS: $n \leq x < n + 1$.

(d) x is a prime.
 ANS: $x > 1$ and \forall positive integers s, r (if $s \cdot r = x$ then $s = 1$ or $r = 1$).
6. (36 points) (a) Let \(n \) be the integer with binary (base 2) representation 110101. Express \(n \) in base 10:

\[\text{ANSWER: } 53 \]

(b) Let \(m \) be the negative integer which has 8-bit, two’s-complement, binary representation 11110110. Express \(m \) in base 10.

\[\text{ANSWER: } -10 \]

7. (36 points) Let the sequence \(a_0, a_1, a_2, \ldots \) be defined by the values \(a_0 = 1 \) and \(a_{n+1} = \sqrt{2} \cdot a_n \) for all \(n \geq 0 \).

To answer the next questions, you should give exact expressions, including the \(\sqrt{2} \) as necessary. (Do not use a calculator to approximate in decimal form.)

(a) What is the value of \(a_{10} \)? ANSWER: \((\sqrt{2})^{10} = 2^5 = 32 \).

(b) What is the value of \(\sum_{i=0}^{11} a_i \)? ANSWER: \(\frac{(\sqrt{2})^{12} - 1}{\sqrt{2} - 1} = \frac{63}{\sqrt{2} - 1} = 63(\sqrt{2} + 1) \).

The next three problems ask you to give proofs. Your answers will be graded on form as well as content: be sure to explain all your steps, use correct grammar, and follow the conventions for writing proofs.

8. (40 points) Either prove or disprove the following assertion:

Assertion: For all integers \(n \), \(n^3 - n \) is divisible by 3.

ANSWER: This true. The most straightforward proof uses a proof by cases based on \(n \mod 3 \).

Proof: Let \(n \) be an integer. By basic algebra, it will suffice to prove that \(n^3 \mod 3 \) is equal to \(n \mod 3 \). This is because if \(n = 3k + r \) and \(n^3 = 3m + r \) for some integers \(k \) and \(m \), then \(n^3 - n = 3(m - k) \) and is thus divisible by 3.

Case 1: \(n = 3k \) for some integer \(k \). Then \(n^3 = 3(9k^3) \) is also a multiple of 3.

Case 2: \(n = 3k + 1 \) for some integer \(k \). Then \(n^3 = 3(3^2k^3 + 3^2k^2 + 3k + 1) + 1 \) by basic algebra. So \(n^3 \mod 3 = n \mod 3 \).

Case 3: \(n = 3k + 2 \) for some integer \(k \). Then \(n^3 = 3(3^2k^3 + 2 \cdot 3^2k^2 + 2^2 \cdot 3k + 2) + 2 \) by basic algebra. So \(n^3 \mod 3 = n \mod 3 \).

Q.E.D.
9. (40 points) Either prove or disprove the following assertion:

Assertion: For all rational numbers \(a\) and \(b\), \(a/b\) is a rational number.

ANSWER: This is false. Taking \(b = 0\) and \(a\) any rational number yields a counterexample.

10. (40 points) Prove by induction on \(n\):

Theorem: Let \(a_1 = 1\) and \(a_{n+1} = \frac{n^2}{n+1} a_n\) for all integers \(n \geq 1\). Then, for all positive integers \(n\), \(a_n = \frac{(n-1)!}{n}\).

Proof: We prove the assertion by induction on \(n \geq 1\).

Base case: \(n = 1\). \(e_1 = 1\). And \(\frac{0}{1} = \frac{1}{1} = 1\).

Induction step: Suppose \(a_n = \frac{(n-1)!}{n}\) is true. We shall prove that \(a_{n+1} = \frac{n!}{n+1}\). We argue as follows:

\[
a_{n+1} = \frac{n^2}{n+1} \cdot a_n
\]

\[
= \frac{n^2}{n+1} \cdot \frac{(n-1)!}{n} \quad \text{by the ind. hyp.}
\]

\[
= \frac{n!}{n+1} \quad \text{by basic algebra.}
\]

Q.E.D.