Math 15A - Discrete Mathematics - Spring 1999
Midterm Review Problems — May 3

On the midterm, you may use a single sheet of notes (double-sided, 8 1/2 x 11 paper). You may not use the textbook or a calculator. This sheet may not be shared with other students; you must have your own separate sheet of notes.

The midterm will cover all the course material to-date, through section 4.3.

1. (a) Consider the sequence 1, −2, 4, −8, 16, −32, …. Letting $a_0 = 1$, $a_1 = −2$, etc., give a general formula for a_i.
 (b) Give a formula for $\sum_{i=0}^{n} a_i$.

2. (a) Express the integer 85 in binary (base 2) notation.
 (b) Express the negative integer −85 in binary notation (using a 8-bit two’s complement representation).

3. Convert the propositional formula
 \[p \rightarrow (q \rightarrow (r \rightarrow (s \rightarrow t))) \]
 into an equivalent formula using only the connectives \land, \lor and \neg.

4. Express the formula $(p \leftrightarrow q) \leftrightarrow r$ as a Boolean circuit using AND, OR and NOT gates.

5. Let $L(x, y)$ be the predicate “x loves y”, and let $H(x)$ be the predicate “x is handsome”. Let quantified variables in $(\forall x)$ and $(\exists y)$ range over all people. Express the following formally using quantifiers, Boolean connectives and the two predicates:
 (a) Someone loves everyone.
 (b) Everyone is loved by someone.
 (c) Some people love no one.
 (d) Any handsome person is loved by everyone.
 (e) There is a handsome person who is loved by no one.
 (f) For a person to be loved by everyone it is necessary that they be handsome.

6. Which of the following are tautologies?
 (a) $(\neg(p \land \neg q)) \leftrightarrow (\neg p \lor q)$
 (b) $p \rightarrow ((p \rightarrow q) \rightarrow p)$
 (c) $(p \leftrightarrow (q \leftrightarrow r)) \leftrightarrow ((p \leftrightarrow q) \leftrightarrow r)$.
7. Express the following assertions (semi-)formally. You may use quantifiers such as “∀ rational \(x \), “∃ positive integer \(y \)”, Boolean connections, and predicates such as “\(x < y \)”, “\(x \leq y \)”, “\(x = y \)” “\(x \neq y \)”, and functions addition, subtraction, multiplication, division and square roots.

(a) There is a smallest positive integer.

(b) There is no smallest positive rational number.

(c) For any irrational \(x < y \), there is a rational \(z \) between \(x \) and \(y \).

(d) For an integer \(n \) to be prime, it is sufficient that \(n \) has at most one divisor which is greater than or equal to \(\sqrt{n} \).

8. Which of the assertions (a)-(d) of the previous problem are true?

9. Prove or disprove the following assertion:

Assertion: Let \(n \) be an odd integer. Then \(n^3 \mod 8 \) is equal to \(n \mod 8 \).

10. Prove or disprove the following assertion: (You may assume without proof that \(\sqrt{2} \) is irrational if you need to. Any other needed irrational number should be proved to be irrational.)

Assertion: For all irrational numbers \(a, b \) with \(a + b \neq 0 \), the number \(a/(a + b) \) is irrational.

11. Prove the following by induction.

Theorem: \(\sum_{n=0}^{k-1} 3n(n + 1) = k^3 - k \).