Substitution: Recall in propositional logic: $A(B/p_i)$

First-order: If $B = C$, A^C is A with B replaced with C, then $A \equiv A^C$.

Substitution of terms for variables x_i:

Example: $\exists x_2 (x_2 + x_2 = x_1)$, "$x_1$ is even".

To say $x_3 + x_4$ is even: $\exists x_2 (x_2 + x_2 = x_3 + x_4)$

Notation $A[x_i]$ is $\exists x_2 (x_2 + x_2 = x_i)$

$A(x_3 + x_4 / x_i) = \exists x_2 (x_2 + x_2 = x_3 + x_4)$

Model uses $A_{x_i}[x_3 + x_4]$.

Warning: What if want to say $x_2 + x_3$ is even?

$A(x_2 + x_3 / x_i) = \exists x_2 (x_2 + x_2 = x_2 + x_3)$

does not say "$x_i + x_3$" is even.

$= \exists x_2 (x_2 + x_2 = x_2 + x_3)$

Fix #1: Use an "algebraic variant" like $\exists x_5 (x_5 + x_5 = x)$

Fix #2: Define "substitutable for" - OK to substitute.
Notation: \[A \left(t_1, \ldots, t_k / x_i, \ldots, x_k \right) \] means substitute \(\overline{t} \) parallel each \(t_j \) for each free occurrence of \(x_j \).

\[A(t/x) \] - shorthand notation.

Definition of substitution. Let \(s \) be a formula. Let \(t_1, \ldots, t_k, x_i, \ldots, x_k \)

Then \(s(t/x) \) is recursively defined by:

1. If \(s \) is \(x_i j \), then \(s(t/x) \) is \(t_j \).
2. If \(s \) is \(x_i \), \(\epsilon \{ i_1, \ldots, i_k \} \) or \(s \) is a constant symbol \(c \), then \(s(t/x) \) is \(s \).
3. If \(s \) is \(f(v_1, \ldots, v_r) \) - \(f \) is any function,
 \(s(t/x) \) is \(f(v_1(t/x), \ldots, v_r(t/x)) \).

Let \(A \) be a formula.
4. If \(A \) is atomic, i.e. \(A \) is \(v_i = v_j \) or \(P(v_1, \ldots, v_k) \), \(P \) is any
 then \(A(t/x) \) is \(v_i(t/x) = v_j(t/x) \), or \(P(v_1(t/x), \ldots, v_k(t/x)) \).
5. If \(A \) is \(\neg \ B \) or \(A \lor C \) or \(Qx_i : B \) \(i \in \{ i_1, \ldots, i_m \} \) \(Qx_i : A \) or \(\exists x_i \),
 then \(A(t/x) \) is \(\neg B(t/x) \) or \(B(t/x) \lor C(t/x) \) or \(Qx_i (B(t/x)) \).
6. If \(A \) is \(Qx_i : B \) then \(A(t/x) \) is

\[Qx_i : B \left(t_1, \ldots, t_{j-1}, t_j + \overline{t} / x_i; x_{j-1}, x_j, x_{j+1}, \ldots, x_k \right) \]
Def \(t \) is substitutable for \(x_i \) in \(A \) is inductively defined by:

1. If \(A \) is atomic, \(t \) is substitutable for \(x_i \) in \(A \).
2. If \(A \) is \(\neg B \) or \(B \lor C \), \(t \) is substitutable for \(x_i \) in \(A \) iff \(t \) is substitutable for \(x_i \) in both \(B \) and \(C \).
3. If \(A \) is \(Q x_i : B \), then \(t \) is substitutable for \(x_i \) in \(A \).
4. If \(A \) is \(Q x y : B \), \(y \neq i \), then \(t \) is substitutable for \(x_i \) in \(A \) iff either \(y \) does not occur in \(t \) or \(x_i \) is not free in \(B \) (in \(A \)).

Informally, \(t \) is substitutable for \(x_i \) in \(A \) iff there is no free occurrence of \(x_i \) in \(A \), in the scope of a quantifier \(Q y \) such that \(y \) occurs in \(t \).

Example: \(x_3 + x_4 \) is substitutable for \(x_i \) in \(\exists x_2 (x_2 + x_2 = x_i) \) \(x_2 \neq x_3 \) is not substitutable.
Theorem: 2 Let s be a term, t_j's terms, x_{ij}'s variables

\[x_1 = t_1 \land \ldots \land x_k = t_k \rightarrow s = s(\bar{t}/\bar{x}) \]

(6) If each t_j is substitutable for x_{ij} in A, then

\[x_1 = t_1 \land \ldots \land x_k = t_k \rightarrow (A \leftrightarrow A(\bar{t}/\bar{x})) \]

Proof - omitted

Examples 1

\[\vdash x = y \rightarrow x + z = y + z \]

Take s to be $x + z$, $s(y/x)$ is $y + z$.

2

\[\vdash x = y \rightarrow u = u \rightarrow x + u = y + u \]

Take s to be $x + u$, $s(y, u/x, u)$ is $y + u$.

3 For f - k-ary,

\[y_1 = z_1 \rightarrow y_2 = z_2 \rightarrow \ldots \rightarrow y_k = z_k \rightarrow f(y_1, \ldots, y_k) = f(z_1, \ldots, z_k) \]

Take s to be $f(y_1, \ldots, y_k)$, $s(\bar{z}/\bar{y})$. Equality Axiom

4

\[x = y \rightarrow (x \leq z \leftrightarrow y \leq z) \]

Take A to be $x \leq z$, $A(y/x)$ is $y \leq z$.

5

\[x = y \rightarrow u = v \rightarrow (x \leq u \leftrightarrow y \leq v) \]

Take A to be $x \leq u$.
6) \[y_1 = z_1 \rightarrow y_2 = z_2 \rightarrow \ldots \rightarrow y_k = z_k \rightarrow (P(y_1, y_k) \rightarrow P(z_1, \ldots, z_k)) \]

when \(P \) is \(k \)-ary

Equality Axiom.

Alphabetic Variant

\[\exists x \exists z (x_2 + x_2 = x_1) \Leftrightarrow \exists x_3 (x_3 + x_3 = x_1) \]

Theorem

Let \(\exists x \, B \) be a formula.

Suppose \(y \) is substitutable for \(x \) in \(B \) and \(y \) does not appear free in \(P \).

Then

\[\exists x \, B \vdash \exists y \, B(y/x). \]

Example

\[B \iff x_2 + x_2 = x_1; \quad x_1, x_3, y = \bar{x}_5 \]

Proof:

\[\vdash x = y \rightarrow (B \leftrightarrow B(y/x)) \] by Previous Theorem.

\[\Omega \vdash \exists x \, B[\sigma] \iff \Omega \vdash B[\tau] \] for some \(x \)-variant \(\tau \) of \(\sigma \).

\[\iff \Omega \vdash B[\tau] \] for the \(y \)-variant \(\tau \) of \(\tau \) with \(\tau(y) = \tau(x) \) since \(y \) not free in \(B \).

\[\iff \Omega \vdash B(y/x)[\tau] \] since \(\tau(y) = \tau(x) \).

\[\iff \Omega \vdash \exists y \, B(y/x)[\tau] \] since \(\sigma, \tau \) differ only on \(x \) and \(y \) and \(x, y \) not free in \(\exists y \, B(y/x) \).
Informal notation for substitution.

Often write $A(x)$ and then later $A(t)$
to mean A is a formula (with free variable x
that occurs only as indicated)
and $A(t) = A(t/x)$.
Understood that t substitutable for x in A
and there are no "extra" occurrences of x in A.

In structures, if \mathcal{O} is a structure and $a \in \Omega_1$,
then $\mathcal{O} \models A(a)$ means

$\mathcal{O} \models A[\sigma]$ for any σ s.t. $\sigma(x) = a$.

If $A \equiv A(x_1, \ldots, x_k)$

$\mathcal{O} \models A[a_1, \ldots, a_k]$ means $\mathcal{O} \models A[\sigma]$

for any σ s.t. $\sigma(x_i) = a_i$ for all i.

Understood - use an alphahebic variant if necessary