\[\text{TFA and } \Pi \vdash \eta \Rightarrow \Pi \vdash A \]

\[\text{TFA and } \Pi \vdash \eta \Rightarrow \Pi \vdash A \]

\[\{ B : \Pi + B \} \cup \{ B : \Pi \vdash B \} \]

Consequences of \(\Pi \); Theorems of \(\Pi \).

\(\Pi \) is a theory if \(\Pi = \{ \exists A : \Pi \vdash A \} \)

\(T \) \text{ is } \eta \vdash \eta \]

\(\neg \exists A + A \Rightarrow \exists \exists A, \neg A \) is inconsistent
Yes it is adequate.
\(\{ \land, \oplus \} \) is not adequate

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
<th>(p \oplus p)</th>
<th>(\neg (p \oplus p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Inconclusive

Question: Can we express \(\land \lor \neg \) or \(\land \rightarrow \) with \(\oplus \)?

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \oplus q)</th>
<th>(\neg (p \oplus q))</th>
<th>(\neg p)</th>
<th>(\neg \neg p)</th>
<th>(p \oplus (q \oplus \neg p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

\(p \oplus q \neq 1 = q \oplus p \)

\(p \oplus (q \oplus p) \neq 1 = (p \oplus q) \lor r \)

\(p \oplus (q \oplus r) = 1 \neq (p \oplus q) \lor (q \oplus r) \)

\(p \equiv q \lor r \equiv 2 \)
\(T \cup (A \lor B) \) is inconsistent \(\iff \ T \cup (A \land B) \) and \(T \cup (A \land B) \) are inconsistent.

\(\implies \) (Easy direction)
\begin{align*}
&\text{Know } A \land A \lor B, \quad \text{and } A \lor A \land B \\
&\text{Know } B \lor A \land B, \quad \text{and } B \lor B \land A
\end{align*}
\(B \lor A \land B \) is a PL-axiom
\(B \lor B \land A \implies B \land \neg A \implies B \)

Let \(C \) be any formula.
Want to show \(T, A \lor C, \) and \(T, B \land C \)

By \(A \lor A \land B, \) \(B \lor A \land B, \) and by the assumption that \(T, A \lor B \lor C \) (\(T \cup A \lor B \) is inconsistent), we get \(T, A \lor C \) and \(T, B \land C \).

\(T \cup A \lor A \land B \) and \(T, A \lor B \lor C \)

By Hypothetical Syllogism, \(T \cup A \implies C \)
\(\therefore T, A \lor C \).
Assume T, A in consistent and T, B in consistent.

Want to show $T \cup \{A \lor B\}$ is inconsistent.

Let C be arbitrary. Want to $T, A \lor B \vdash C$

Use proof-by-cases:

Show $T, A \lor B, A \vdash C$

and Show $T, A \lor B, \neg A \vdash C$

i.e. $T, \neg A \rightarrow B, \neg A \vdash C$

$T, \neg A \rightarrow B, \neg A \vdash B$ by M.P.

and $T \vdash B \rightarrow C$ since $T \cup \{B\}$ is inconsistent.

So $T, \neg A \rightarrow B, \neg A \vdash C$ MP.

$T, A \vdash C$ since $T \cup \{A\}$ is inconsistent.

Thus $T, A \lor B, A \vdash C$.
Proof by cases

\[T + A \iff T, B \vdash A \text{ and } T, \neg B \vdash A \]

i.e. \[T + A \iff T \vdash B \rightarrow A \text{ and } T \vdash \neg B \rightarrow A \]

Two cases \(B \) and \(\neg B \)

Generalized Proof by Cases

Suppose \(T \vdash D \lor E \)

Then \(T + A \iff T \vdash D \rightarrow A \text{ and } T \vdash E \rightarrow A \)

Proof omitted