Math 166 - Theory of Computability - Winter 1999

“Pop” Quiz #2

1. Write out these sets explicitly (by listing all their elements). 2^X denotes the powerset of X. Use (x, y) notation for ordered pairs.

 (a) $2^\emptyset = \,$

 (b) $2^\{\emptyset\} = \,$

 (c) $2^{\{a, b\}} \setminus \{a, b, \{a\}\} = \,$

 (d) $\{a, b\} \times \{c\} = \,$

 (e) $\{a, b\} \times \{\{c\}\} = \,$

 (f) $\{a, b\} \cup (\{b, c\} \cap \{a, c\}) = \,$

 (g) $(\{a, b\} \cup \{b, c\}) \cap \{a, c\} = \,$

2. Indicate whether the statements are true or false:

 ___ (c) Caterpillars have wings if dogs have wings.

 ___ (c) Butterflies have wings only if caterpillars have wings.

 ___ (c) For all sets A, if $\emptyset \in 2^A$, then A is empty.

3. Describe the following sets in English: (\mathbb{N} is the set of non-negative integers.)

 (a) $\{ n \in \mathbb{N} : n \text{ is greater than each prime in } \mathbb{N} \}$

 (b) $\{ n \in \mathbb{N} : n \text{ is greater than some prime in } \mathbb{N} \}$