1. State the definition of “the rank of A”. **ANSWER:** The dimension of the row space of A. (It also equals the dimension of the column space of A.)

2. Now let A be the matrix $A = \begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 1 & 2 & 2 & 3 & 2 \\ 1 & 2 & 2 & 3 & 3 \\ 1 & 2 & 2 & 3 & 4 \end{pmatrix}$. Answer questions a.-e.

 a. Calculate the rank A.
 b. Calculate the nullity A.
 c. Give a basis for the column space of A.
 d. Give a basis for the row space of A.
 e. Give a basis for the null space of A.

 ANSWER: Use row operations to find the row echelon form of A as

 \[
 \begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.
 \]

 Since A’s ref form has three lead variables, A has rank 3. Since there are 2 free variables, A has nullity 2.

 The lead variables occur in columns 1, 3 and 5, so a basis for the column space of A is

 \[(1, 1, 1, 1, 1)^T, (1, 2, 2, 2)^T, (1, 2, 3, 4)^T.\]

 A basis for the row space of A is

 \[(1, 2, 1, 1, 1), (0, 0, 1, 2, 1), (0, 0, 0, 0, 1).\]

 Solving $Ax = 0$ using back-substitution (with the ref form of A) shows that a basis for the null space is:

 \[(1, 0, -2, 1, 0)^T, (-2, 1, 0, 0, 0)^T.\]